zbMATH — the first resource for mathematics

A note on Drazin invertibility for upper triangular block operators. (English) Zbl 1304.47005
A bounded linear operator \(A\) acting on a Banach space \(X\) is said to be an upper triangular block operator of order \(n\), denoted \(A\in\mathcal{U}\mathcal{T}_n(X)\), if there exists a decomposition of \(X=X_1\oplus\cdots\oplus X_n\) and an \(n\times n\) matrix operator \((A_{i,j})_{1\leq i,j\leq n}\) such that \(A=(A_{i,j})_{1\leq i,j\leq n}\), \(A_{i,j} =0\) for \(i>j\). For these operators, the author obtains several conditions on the entries \(A_{i,j}\), \(j>i\) or \(i=j\), for the equality \(\sigma_D(A)=\bigcup_{i=1}^n\sigma_D(A_{i,i})\), where \(\sigma_D(.)\) is the Drazin spectrum. Also, some applications concerning the Fredholm theory and meromorphic operators are given.

47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
47A53 (Semi-) Fredholm operators; index theories
Full Text: DOI
[1] Amouch M., Zguitti H.: B–Fredholm and Drazin invertible operators through localized SVEP. Math. Bohem 136, 39–49 (2011) · Zbl 1216.47018
[2] Barnes B.A.: The spectral theory of upper triangular matrices with entries in a Banach algebra. Math. Nachr. 241, 5–20 (2002) · Zbl 1030.46057 · doi:10.1002/1522-2616(200207)241:1<5::AID-MANA5>3.0.CO;2-F
[3] Barnes B.A.: Riesz points of upper triangular operator matrices. Proc. Amer. Math. Soc. 133, 1343–1347 (2005) · Zbl 1099.47500 · doi:10.1090/S0002-9939-04-07811-6
[4] Benhida C., Zerouali E.H., Zguitti H.: Spectra of Upper Triangular Operator Matrices. Proc. Amer. Math. Soc. 133, 3013–3020 (2005) · Zbl 1067.47005 · doi:10.1090/S0002-9939-05-07812-3
[5] C. Benhida, E. H. Zerouali and H. Zguitti, Spectral properties of upper triangular block operators. Acta. Sci. Math. (Szeged) 71 (2005), 681–690. · Zbl 1105.47005
[6] Berkani M.: Index of Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc. 130, 1717–1723 (2002) · Zbl 0996.47015 · doi:10.1090/S0002-9939-01-06291-8
[7] M. Berkani and M. Amouch, Preservation of property (gw) under perturbations. Acta Sci. Math. (Szeged) 74 (2008), 769–781. · Zbl 1199.47068
[8] S. V. Djordjević and Y. M. Han, A note on Weyl’s theorem for operator matrices. Proc. Amer. Math. Soc. 130 (2003), 2543–2547. · Zbl 1041.47006
[9] S. V. Djordjević and H. Zguitti, Essential point spectra of operator matrices through local spectral theory. J. Math. Anal. Appl. 338 (2008), 285–291. · Zbl 1148.47004
[10] B. P. Duggal, Upper triangular operator matrices, SVEP and Browder, Weyl theorems. Integral Equations Operator Theory 63 (2009), 17–28. · Zbl 1236.47004
[11] Duggal B.P.: Upper triangular operators with SVEP. J. Korean Math. Soc. 47, 235–246 (2010) · Zbl 1238.47003 · doi:10.4134/JKMS.2010.47.2.235
[12] J. K. Finch, The single valued extension property on a Banach space. Pacific J. Math. 58 (1975), 61–69. · Zbl 0315.47002
[13] I. Gohberg, S. Goldberg and M. A. Kaashoek, Class of Linear Operators Vol.I. Birkhäuser, Basel, 1990.
[14] M. Houimdi and H. Zguitti, Propriétés spectrales locales d’une matrice carrée des opérateurs. Acta Math. Vietnam. 25 (2000), 137–144. · Zbl 0970.47003
[15] I. B. Jung, E. Ko and C. Pearcy, Spectral properties of some matrices. Arch. Math. (Basel) 80 (2003) 37–46. · Zbl 1059.47022
[16] K. B. Laursen, Operators with finite ascent. Pacific J. Math. 152 (1992), 323–336. · Zbl 0783.47028
[17] D. C. Lay, Spectral analysis using ascent, descent, nullity and defect. Math. Ann. 184 (1970), 197–214. · Zbl 0177.17102
[18] A. E. Taylor and D. C. Lay, Introduction to Functional Analysis, John Wiley &amp; Sons, New York, Chichester, Brisbane, Toronto, 1980. · Zbl 0501.46003
[19] E. H. Zerouali and H. Zguitti, Perturbation of the spectra of operator matrices and local spectral theory. J. Math. Anal. Appl. 324 (2006), 992–1005. · Zbl 1105.47006
[20] H. Zguitti, On the Drazin inverse for upper triangular operator matrices. Bull. Math. Anal. Appl. 2 (2) (2010), 27–33. · Zbl 1312.47003
[21] S. Zhang, H. Zhong and Q. Jiang, Drazin spectrum of operator matrices on the Banach space. Linear Alg. Appl. 429 (2008), 2067–2075. · Zbl 1157.47004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.