zbMATH — the first resource for mathematics

A note on the Browder’s and Weyl’s theorem. (English) Zbl 1163.47005
Let \(T\) be a bounded linear operator on a Banach space \(X\) and let \(\sigma(T)\), \(\sigma_w(T)\), \(\sigma_b(T)\), and \(\sigma_{bw}(T)\) be its spectrum, Weyl spectrum, Browder spectrum, and B-Weyl spectrum, respectively. One says that Weyl’s theorem holds for \(T\) if \(\sigma(T)\setminus\sigma_w(T)=E_0(T)\), where \(E_0(T)\) is the set of all isolated points of \(\sigma(T)\) which are eigenvalues of finite multiplicity. Browder’s theorem holds for \(T\) if \(\sigma_w(T)=\sigma(T)\setminus \pi_0(T)\), where \(\pi_0(T)\) is the set of all isolated points of \(\sigma(T)\) for which the corresponding spectral projection is of finite rank. The generalized Weyl’s theorem says that \(\sigma(T)\setminus\sigma_{bw}(T)=E(T)\), where \(E(T)\) is the set of all isolated points of \(\sigma(T)\) which are eigenvalues. Further, \(T\) is said to satisfy the generalized Browder’s theorem if \(\sigma(T)\setminus\sigma_{bw}(T)=\pi(T)\), where \(\pi(T)\) is the set of all poles of the resolvent of \(T\). Finally, one says that \(T\) has the single-valued extension property (SVEP) at \(\lambda\in{\mathbb C}\) if, for every open disk \(D(\lambda,r)\), the null function is the only analytic solution of the equation \((T-\mu)f(\mu)=0\) for all \(\mu\in D(\lambda,r)\).
The authors show several results relating the above defined concepts. In particular, they prove that the following properties are equivalent:
\(T\) satisfies Browder’s theorem;
\(T\) has the SVEP at \(\lambda\notin\sigma_w(T)\);
\(T\) satisfies generalized Browder’s theorem;
\(T\) has the SVEP at \(\lambda\notin\sigma_{bw}(T)\).
Another representative result is the following. Suppose that \(E(T)=\pi(T)\). Then the following properties are equivalent:
(a) \(T\) satisfies Weyl’s theorem;
(b) \(T\) satisfies Browder’s theorem;
(c) \(T\) has the SVEP at all \(\lambda\notin\sigma_w(T)\);
(d) \(T\) has the SVEP at all \(\lambda\notin\sigma_{bw}(T)\).
Some applications of the obtained results are given.

47A53 (Semi-) Fredholm operators; index theories
47A10 Spectrum, resolvent
47A11 Local spectral properties of linear operators
Full Text: DOI
[1] Heuser, H. G.: Functional Analysis, John Wiley and Sons, 1982 · Zbl 0465.47001
[2] Berkani, M., Koliha, J. J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged), 69, 359–376 (2003) · Zbl 1050.47014
[3] Weyl, H.: Über beschränkte quadratische formen, deren Differenz vollsteig ist. Rend. Circ. Mat. Palermo, 27, 373–392 (1909) · JFM 40.0395.01 · doi:10.1007/BF03019655
[4] Coburn, L. A.: Weyl’s theorem for nonnormal operators. Michigan Math. J., 13, 285–288 (1966) · Zbl 0173.42904 · doi:10.1307/mmj/1031732778
[5] Berberian, S. K.: An extension of Weyl’s theorem to a class of not necessarily normal operators. Michigan Math. J., 16, 273–279 (1969) · Zbl 0175.13603 · doi:10.1307/mmj/1029000272
[6] Berberian, S. K.: The Weyl spectrum of an operator. Indiana Univ. Math. J., 20, 529–544 (1970) · Zbl 0203.13401 · doi:10.1512/iumj.1970.20.20044
[7] Curto, R. E., Han, Y. M.: Weyl’s theorem for algebraically paranormal operators. Integr. Equ. Oper. Theory., 47, 307–314 (2003) · Zbl 1054.47018 · doi:10.1007/s00020-002-1164-1
[8] Duggal, B. P.: Hereditarily normaloid operators. Extracta Math., 20(2), 203–217 (2005) · Zbl 1097.47005
[9] Han, Y. M., Lee, W. Y.: Weyl’s theorem holds for algebraically hyponormal operators. Proc. Amer. Math. Soc., 128, 2291–2296 (2000) · Zbl 0953.47018 · doi:10.1090/S0002-9939-00-05741-5
[10] Lee, W. Y.: Weyl’s theorem for operator matrices. Integral Equations and Operator Theory, 32, 319–331 (1998) · Zbl 0923.47001 · doi:10.1007/BF01203773
[11] Oudghiri, M.: Weyl’s and Browder’s theorem for operators satisfying the SVEP. Studia Math., 163(1), 85–101 (2004) · Zbl 1064.47004 · doi:10.4064/sm163-1-5
[12] Harte, R. E., Lee, W. Y.: Another note on Weyl’s theorem. Trans. Amer. Math. Soc., 349, 2115–2124 (1997) · Zbl 0873.47001 · doi:10.1090/S0002-9947-97-01881-3
[13] Berkani, M.: Index of B-Fredholm operators and generalization of a Weyl theorem. Proc. Amer. Math. Soc., 130, 1717–1723 (2002) · Zbl 0996.47015 · doi:10.1090/S0002-9939-01-06291-8
[14] Berkani, M., Arroud, A.: Generalized Weyl’s theorem and hyponormal operators. J. Aust. Math. Soc., 76, 291–302 (2004) · Zbl 1061.47021 · doi:10.1017/S144678870000896X
[15] Cao, X., Guo, M., Meng, B.: Weyl type theorem for p-hyponormal and M-hyponormal operators. Studia Math., 163, 177–188 (2004) · Zbl 1075.47011 · doi:10.4064/sm163-2-5
[16] Zguitti, H.: A note on generalized Weyl’s theorem. J. Math. Anal. Appl., 316, 373–381 (2006) · Zbl 1101.47002 · doi:10.1016/j.jmaa.2005.04.057
[17] Amouch, M.: Weyl type theorems for operators satisfying the single-valued extension property. J. Math. Anal. Appl., 326, 1476–1484 (2007) · Zbl 1117.47007 · doi:10.1016/j.jmaa.2006.03.085
[18] Amouch, M.: Generalized a-Weyl’s theorem and the single-valued extension property. Extracta. Math., 21(1), 51–65 (2006) · Zbl 1123.47005
[19] Amouch, M., Zguitti, H.: On the equivalence of Browder’s and generalized Browder’s theorem. Glasgow Math. J., 48, 179–185 (2006) · Zbl 1097.47012 · doi:10.1017/S0017089505002971
[20] Finch, J. K.: The single valued extension property on a Banach space. Pacific J. Math., 58, 61–69 (1975) · Zbl 0315.47002
[21] Aiena, P., Monsalve, O.: The single valued extension property and the generalized Kato decomposition property. Acta Sci. Math. (Szegzed), 67, 461–477 (2001) · Zbl 1017.47008
[22] Koliha, J. J.: Isolated spectral points. Proc. Amer. Math. Soc., 124, 3417–3424 (1996) · Zbl 0864.46028 · doi:10.1090/S0002-9939-96-03449-1
[23] Aiena, P., Monsalve, O.: Operators which do not have the single valued extension property. J. Math. Anal. Appl., 250, 435–448 (2000) · Zbl 0978.47002 · doi:10.1006/jmaa.2000.6966
[24] Dunford, N., Schwartz, J. T.: Linear Operators. Part I, Interscience, New York, 1964 · Zbl 0128.34803
[25] Duggal, B. P.: Browder-Weyl theorems for polaroid operators satisfying an orthogonality property, the International Conference on Functional Analysis, Operator Theory and Application, FAOT 2005, Italy
[26] Chourasia, N. N., Ramanujan, P. B.: Paranormal operators on Banach spaces. Bull. Austral. Math. Soc., 21, 161–168 (1980) · Zbl 0417.47005 · doi:10.1017/S0004972700005980
[27] Schmoeger, C.: On operators T such that Weyl’s theorem holds for f(T). Extracta Math., 13, 27–33 (1998) · Zbl 0977.47003
[28] Mbekhta, M.: Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectraux. Glasgow Math. J., 29, 159–175 (1987) · Zbl 0657.47038 · doi:10.1017/S0017089500006807
[29] Mbekhta, M.: Résolvant généralisé et théorie spectrale. J. Operator Theory, 21, 69–105 (1989) · Zbl 0694.47002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.