Berkani, M.; Kachad, M.; Zariouh, H.; Zguitti, H. Variations on a-Browder-type theorems. (English) Zbl 06315237 Sarajevo J. Math. 9(22), No. 2, 271-281 (2013). Summary: We introduce and we study the new spectral properties \((SBw)\), \((SBaw)\), \((SBab)\) and \((SBb)\). Among other results, we show that if \(T\) is a bounded linear operator acting on a Banach space \(X\), then \(T\) possesses property \((SBb)\) if and only if \(T\) possesses property \((b)\) and \(\prod^0 (T) = \prod_a (T)\). Cited in 1 ReviewCited in 2 Documents MSC: 47A53 (Semi-) Fredholm operators; index theories 47A10 Spectrum, resolvent 47A11 Local spectral properties of linear operators Keywords:essential semi-B-Fredholm spectrum; a-Weyl’s theorem; a-Browder’s theorem; property \((SBw)\) PDF BibTeX XML Cite \textit{M. Berkani} et al., Sarajevo J. Math. 9(22), No. 2, 271--281 (2013; Zbl 06315237) Full Text: DOI