×

Unruh-DeWitt detectors in spherically symmetric dynamical space-times. (English) Zbl 1252.83039

Summary: In the present paper, Unruh-DeWitt detectors are used in order to investigate the issue of temperature associated with a spherically symmetric dynamical space-times. Firstly, we review the semi-classical tunneling method, then we introduce the Unruh-DeWitt detector approach. We show that for the generic static black hole case and the FRW de Sitter case, making use of peculiar Kodama trajectories, semiclassical and quantum field theoretic techniques give the same standard and well known thermal interpretation, with an associated temperature, corrected by appropriate Tolman factors. For a FRW space-time interpolating de Sitter space with the Einstein-de Sitter universe (that is a more realistic situation in the frame of \(\varLambda \)CDM cosmologies), we show that the detector response splits into a de Sitter contribution plus a fluctuating term containing no trace of Boltzmann-like factors, but rather describing the way thermal equilibrium is reached in the late time limit. As a consequence, and unlike the case of black holes, the identification of the dynamical surface gravity of a cosmological trapping horizon as an effective temperature parameter seems lost, at least for our co-moving simplified detectors. The possibility remains that a detector performing a proper motion along a Kodama trajectory may register something more, in which case the horizon surface gravity would be associated more likely to vacuum correlations than to particle creation.

MSC:

83C45 Quantization of the gravitational field
83F05 Relativistic cosmology
80A10 Classical and relativistic thermodynamics
83C57 Black holes
81T20 Quantum field theory on curved space or space-time backgrounds
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Hawking, S.W.: Nature 248, 30 (1974) · Zbl 1370.83053 · doi:10.1038/248030a0
[2] Hawking, S.W.: Commun. Math. Phys. 43, 199 (1975) [Erratum-ibid. 46, 206 (1976)] · Zbl 1378.83040 · doi:10.1007/BF02345020
[3] DeWitt, B.S.: Phys. Rep. 19, 295 (1975) · doi:10.1016/0370-1573(75)90051-4
[4] Birrell, N.D., Davies, P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982) · Zbl 0476.53017
[5] Wald, R.M.: Quantum Field Theory in Curved Spacetime and Black Hole Thermodynamics. Chicago Lectures in Physics. Chicago University Press, Chicago (1994) · Zbl 0842.53052
[6] Fulling, S.A.: Aspects of Quantum Field Theory in Curved Space-Time. Cambridge University Press, Cambridge (1996)
[7] Frolov, V.P., Novikov, I.D.: Black Hole Physics. Kluwer Academic, Dordrecht (2007)
[8] Unruh, W.G.: Philos. Trans. R. Soc. Lond. A 366, 2905 (2008) · Zbl 1153.81462 · doi:10.1098/rsta.2008.0062
[9] Barcelo, C., Liberati, S., Visser, M.: Living Rev. Relativ. 8, 12 (2005). gr-qc/0505065
[10] Kodama, H.: Prog. Theor. Phys. 63, 1217 (1980) · doi:10.1143/PTP.63.1217
[11] Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S., Zoccatelli, G.: Phys. Lett. B 657, 107 (2007) · Zbl 1246.83110 · doi:10.1016/j.physletb.2007.10.005
[12] Hayward, S.A., Di Criscienzo, R., Vanzo, L., Nadalini, M., Zerbini, S.: Class. Quantum Gravity 26, 062001 (2009) · Zbl 1162.83333 · doi:10.1088/0264-9381/26/6/062001
[13] Di Criscienzo, R., Hayward, S.A., Nadalini, M., Vanzo, L., Zerbini, S.: Class. Quantum Gravity 27, 015006 (2010)
[14] Abreu, G., Visser, M.: Phys. Rev. D 82, 044027 (2010) · doi:10.1103/PhysRevD.82.044027
[15] Vanzo, L., Acquaviva, G., Di Criscienzo, R.: Class. Quantum Gravity 28, 183001 (2011) · Zbl 1225.83004 · doi:10.1088/0264-9381/28/18/183001
[16] Parikh, M.K., Wilczek, F.: Phys. Rev. Lett. 85, 5042 (2000) · Zbl 1369.83053 · doi:10.1103/PhysRevLett.85.5042
[17] Visser, M.: Int. J. Mod. Phys. D 12, 649 (2003) · Zbl 1079.83532 · doi:10.1142/S0218271803003190
[18] Nielsen, A.B., Visser, M.: Class. Quantum Gravity 23, 4637 (2006) · Zbl 1148.83012 · doi:10.1088/0264-9381/23/14/006
[19] Angheben, M., Nadalini, M., Vanzo, L., Zerbini, S.: J. High Energy Phys. 0505, 014 (2005)
[20] Nadalini, M., Vanzo, L., Zerbini, S.: J. Phys. A, Math. Gen. 39, 6601 (2006) · Zbl 1101.83026 · doi:10.1088/0305-4470/39/21/S59
[21] Srinivasan, K., Padmanabhan, T.: Phys. Rev. D 60, 24007 (1999) · doi:10.1103/PhysRevD.60.024007
[22] Kerner, R., Mann, R.B.: Phys. Rev. D 73, 104010 (2006) · doi:10.1103/PhysRevD.73.104010
[23] Medved, A.J.M., Vagenas, E.C.: Mod. Phys. Lett. A 20, 2449 (2005) · Zbl 1076.83015 · doi:10.1142/S021773230501861X
[24] Arzano, M., Medved, A.J.M., Vagenas, E.C.: J. High Energy Phys. 0509, 037 (2005)
[25] Banerjee, R., Majhi, B.R.: Phys. Lett. B 662, 62 (2008) · Zbl 1282.83025 · doi:10.1016/j.physletb.2008.02.044
[26] Di Criscienzo, R., Vanzo, L.: Europhys. Lett. 82, 60001 (2008) · doi:10.1209/0295-5075/82/60001
[27] Di Criscienzo, R., Vanzo, L., Zerbini, S.: J. High Energy Phys. 1005, 092 (2010) · Zbl 1271.81127 · doi:10.1007/JHEP03(2010)001
[28] Lindesay, J., Sheldon, P.: Class. Quantum Gravity 27, 215015 (2010) · Zbl 1205.83048 · doi:10.1088/0264-9381/27/21/215015
[29] Brown, B.A., Lindesay, J.: AIP Conf. Proc. 1280, 3 (2010). arXiv: 0904.4192 [gr-qc] · doi:10.1063/1.3507200
[30] Hayward, S.A., Di Criscienzo, R., Nadalini, M., Vanzo, L., Zerbini, S.: arXiv: 0909.2956 [gr-qc]
[31] Akhmedov, E.T., Akhmedova, V., Singleton, D.: Phys. Lett. B 642, 124–128 (2006) · Zbl 1248.83046 · doi:10.1016/j.physletb.2006.09.028
[32] Akhmedov, E.T., Akhmedova, V., Pilling, T., et al.: Int. J. Mod. Phys. A 22, 1705–1715 (2007) · Zbl 1206.83093 · doi:10.1142/S0217751X07036130
[33] Akhmedov, E.T., Pilling, T., Singleton, D.: Int. J. Mod. Phys. D 17, 2453–2458 (2008) · Zbl 1172.83320 · doi:10.1142/S0218271808013947
[34] Akhmedova, V., Pilling, T., de Gill, A., et al.: Phys. Lett. B 666, 269–271 (2008) · Zbl 1328.83069 · doi:10.1016/j.physletb.2008.07.017
[35] Hayward, S.A.: Class. Quantum Gravity 15, 3147 (1998) · Zbl 0942.83040 · doi:10.1088/0264-9381/15/10/017
[36] Peng, J., Hayward, S.A.: J. Shanghai Norm. Univ. Nat. Sci. 2010(04) (2010)
[37] Wu, S.F., Wang, B., Yang, G.H., Zhang, P.M.: Class. Quantum Gravity 25, 235018 (2008)
[38] Chen, Y.X., Li, J.L., Wang, Y.Q.: arXiv: 1008.3215 [hep-th]
[39] Brout, R., Horwitz, G., Weil, D.: Phys. Lett. B 192, 318 (1987) · doi:10.1016/0370-2693(87)90114-6
[40] Bros, J., Epstein, H., Moschella, U.: J. Cosmol. Astropart. Phys. 0802, 003 (2008)
[41] Bros, J., Epstein, H., Moschella, U.: Ann. Henri Poincaré 11, 611 (2010) · Zbl 1208.83111 · doi:10.1007/s00023-010-0042-7
[42] Bros, J., Epstein, H., Gaudin, M., Moschella, U., Pasquier, V.: Commun. Math. Phys. 295, 261 (2010) · Zbl 1197.83059 · doi:10.1007/s00220-009-0875-4
[43] Volovik, G.E.: JETP Lett. 90, 1 (2009) · doi:10.1134/S0021364009130013
[44] Crispino, L.C.B., Higuchi, A., Matsas, G.E.A.: Rev. Mod. Phys. 80, 787 (2008) · Zbl 1205.83030 · doi:10.1103/RevModPhys.80.787
[45] Casadio, R., Chiodini, S., Orlandi, A., Acquaviva, G., Di Criscienzo, R., Vanzo, L.: arXiv: 1011.3336 [gr-qc]
[46] Kothawala, D., Padmanabhan, T.: Phys. Lett. B 690, 201 (2010). arXiv: 0911.1017 [gr-qc] · doi:10.1016/j.physletb.2010.05.026
[47] Obadia, N.: Phys. Rev. D 78, 083532 (2008) · doi:10.1103/PhysRevD.78.083532
[48] Moretti, V., Pinamonti, N.: Commun. Math. Phys. (2011). doi: 10.1007/s00220-011-1369-8
[49] Takagi, S.: Prog. Theor. Phys. Suppl. 88, 1 (2004) · doi:10.1143/PTPS.88.1
[50] Schlicht, S.: Class. Quantum Gravity 21, 4647 (2004) · Zbl 1060.83025 · doi:10.1088/0264-9381/21/19/011
[51] Langlois, P.: Ann. Phys. 321, 2027 (2006) · Zbl 1103.81013 · doi:10.1016/j.aop.2006.01.013
[52] Obadia, N., Milgrom, M.: Phys. Rev. D 75, 065006 (2007) · doi:10.1103/PhysRevD.75.065006
[53] Louko, J., Satz, A.: Class. Quantum Gravity 23, 6321 (2006) · Zbl 1117.83030 · doi:10.1088/0264-9381/23/22/015
[54] Louko, J., Satz, A.: Class. Quantum Gravity 25, 055012 (2008) · Zbl 1136.83019 · doi:10.1088/0264-9381/25/5/055012
[55] Gibbons, G.W., Hawking, S.W.: Phys. Rev. D 14, 2738 (1977) · doi:10.1103/PhysRevD.15.2738
[56] Narnhofer, H., Peter, I., Thirring, W.E.: Int. J. Mod. Phys. B 10, 1507 (1996) · Zbl 1229.81205 · doi:10.1142/S0217979296000611
[57] Deser, S., Levin, O.: Class. Quantum Gravity 14, L163 (1997) · Zbl 0884.53059 · doi:10.1088/0264-9381/14/9/003
[58] Åminneborg, S., Bengtsson, I., Holst, S., Peldán, P.: Class. Quantum Gravity 13, 2707 (1996) · Zbl 0862.53065 · doi:10.1088/0264-9381/13/10/010
[59] Mann, R.B.: Class. Quantum Gravity 14, L109 (1997) · Zbl 0868.57025 · doi:10.1088/0264-9381/14/1/005
[60] Brill, D.R.: Helv. Phys. Acta 69, 249 (1996)
[61] Brill, D.R., Louko, J., Peldán, P.: Phys. Rev. D 56, 3600 (1997) · doi:10.1103/PhysRevD.56.3600
[62] Vanzo, L.: Phys. Rev. D 56, 6475 (1997) · doi:10.1103/PhysRevD.56.6475
[63] Svaiter, B.F., Svaiter, N.F.: Phys. Rev. D 46, 5267–5277 (1992) · doi:10.1103/PhysRevD.46.5267
[64] Garbrecht, B., Prokopec, T.: Class. Quantum Gravity 21, 4993 (2004) · Zbl 1060.83024 · doi:10.1088/0264-9381/21/21/016
[65] Garbrecht, B., Prokopec, T.: Phys. Rev. D 70, 083529 (2004) · doi:10.1103/PhysRevD.70.083529
[66] Mukhanov, V.: Physical Foundations of Cosmology. Cambridge University Press, Cambridge (2005) · Zbl 1095.83002
[67] Parker, L.: Phys. Rev. Lett. 21, 562–564 (1968) · doi:10.1103/PhysRevLett.21.562
[68] Parker, L.: Phys. Rev. 183, 1057–1068 (1969) · Zbl 0186.58603 · doi:10.1103/PhysRev.183.1057
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.