×

zbMATH — the first resource for mathematics

Key player policies when contextual effects matter. (English) Zbl 1314.91180
Summary: We consider a model where the criminal decision of each individual is affected by not only her own characteristics, but also by the characteristics of her friends (contextual effects). We determine who the key player is, i.e., the criminal who once removed generates the highest reduction in total crime in the network. We propose a new measure, the contextual intercentrality measure, that generalizes the one proposed by the first author et al. [Econometrica 74, No. 5, 1403–1417 (2006; Zbl 1138.91590)] by taking into account the change in contextual effects following the removal of the key player. We also provide an example showing that the key player can be different whether contextual effects are taken into account or not. This means that the planner may target the wrong person if it ignores the effect of the “context” when removing a criminal from a network.

MSC:
91D10 Models of societies, social and urban evolution
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] DOI: 10.1111/j.1468-0262.2006.00709.x · Zbl 1138.91590 · doi:10.1111/j.1468-0262.2006.00709.x
[2] DOI: 10.1162/jeea.2010.8.1.34 · doi:10.1162/jeea.2010.8.1.34
[3] DOI: 10.1162/qjec.2009.124.1.105 · Zbl 05660570 · doi:10.1162/qjec.2009.124.1.105
[4] DOI: 10.1086/228631 · doi:10.1086/228631
[5] Borgatti S. P., Dynamic social Network modeling and analysis: Workshop summary and papers pp 241– (2003)
[6] DOI: 10.1007/s10588-006-7084-x · Zbl 1198.91180 · doi:10.1007/s10588-006-7084-x
[7] DOI: 10.1111/j.1467-937X.2009.00550.x · Zbl 1187.91163 · doi:10.1111/j.1467-937X.2009.00550.x
[8] DOI: 10.1111/j.0020-6598.2004.00292.x · doi:10.1111/j.0020-6598.2004.00292.x
[9] DOI: 10.1056/NEJMsa066082 · doi:10.1056/NEJMsa066082
[10] DOI: 10.1136/bmj.a2533 · doi:10.1136/bmj.a2533
[11] DOI: 10.1016/j.jhealeco.2008.04.005 · doi:10.1016/j.jhealeco.2008.04.005
[12] DOI: 10.1257/aer.104.6.1806 · doi:10.1257/aer.104.6.1806
[13] DOI: 10.2307/1907925 · Zbl 0051.00901 · doi:10.2307/1907925
[14] DOI: 10.1016/j.socnet.2010.06.004 · doi:10.1016/j.socnet.2010.06.004
[15] DOI: 10.2307/2946686 · doi:10.2307/2946686
[16] Goyal S., Connections: An introduction to the economics of networks (2007) · Zbl 1138.91005
[17] Jackson M. O., Social and economic networks (2008) · Zbl 1149.91051
[18] Jackson M. O., Handbook of game theory 4 (2014)
[19] DOI: 10.1007/BF02289026 · Zbl 0053.27606 · doi:10.1007/BF02289026
[20] Kleiman M. A., When brute force fails: How to have less crime and less punishment (2009) · doi:10.1515/9781400831265
[21] Kling J. R., Quarterly Journal of Economics 120 pp 87– (2005)
[22] DOI: 10.1007/978-3-540-31955-9_3 · doi:10.1007/978-3-540-31955-9_3
[23] Lindquist M. J., Key players in co-offending networks (2014)
[24] DOI: 10.1086/653506 · doi:10.1086/653506
[25] Liu , X. Patacchini , E. Zenou , Y. & Lee , L.F. ( 2012 ).Criminal networks: Who is the key player?(CEPR Discussion Paper No. 8772). Retrieved from http://www.cepr.org/pubs/dps/DP8772
[26] DOI: 10.2307/2298123 · Zbl 0800.90377 · doi:10.2307/2298123
[27] DOI: 10.1257/jep.14.3.115 · doi:10.1257/jep.14.3.115
[28] DOI: 10.1007/978-1-84882-229-0_2 · doi:10.1007/978-1-84882-229-0_2
[29] DOI: 10.1093/jleo/ewp038 · doi:10.1093/jleo/ewp038
[30] DOI: 10.1086/467358 · doi:10.1086/467358
[31] DOI: 10.1086/261800 · doi:10.1086/261800
[32] Sarangi S., Key players and key groups in teams: A network approach using soccer data (2011)
[33] DOI: 10.1016/S0144-8188(97)00025-2 · doi:10.1016/S0144-8188(97)00025-2
[34] DOI: 10.1017/CBO9780511815478 · doi:10.1017/CBO9780511815478
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.