×

zbMATH — the first resource for mathematics

Network games with incomplete information. (English) Zbl 1368.91044
Summary: We consider a network game with strategic complementarities where the individual reward or the strength of interactions is only partially known by the agents. Players receive different correlated signals and they make inferences about other players’ information. We demonstrate that there exists a unique Bayesian-Nash equilibrium. We characterize the equilibrium by disentangling the information effects from the network effects and show that the equilibrium effort of each agent is a weighted combinations of different Katz-Bonacich centralities.

MSC:
91A43 Games involving graphs
91D30 Social networks; opinion dynamics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Acemoglu, D.; Dahleh, M. A.; Lobel, I.; Ozdaglar, A., Bayesian learning in social networks, Rev. Econom. Stud., 78, 1201-1236, (2011) · Zbl 1274.91354
[2] Acemoglu, D.; Ozdaglar, A.; Tahbaz-Salehi, A., Systemic risk and stability in financial networks, Amer. Econ. Rev., 105, 564-608, (2015)
[3] Ando, T., Totally positive matrices, Linear Algebra Appl., 90, 165-219, (1987) · Zbl 0613.15014
[4] Bala, V.; Goyal, S., Learning from neighbors, Rev. Econom. Stud., 65, 595-621, (1998) · Zbl 0910.90103
[5] Ballester, C.; Calvó-Armengol, A.; Zenou, Y., Who’s who in networks: wanted the key player, Econometrica, 74, 1403-1417, (2006) · Zbl 1138.91590
[6] Ballester, C.; Calvó-Armengol, A.; Zenou, Y., Delinquent networks, J. Eur. Econ. Assoc., 8, 34-61, (2010)
[7] Belhaj, M.; Deroïan, F., Strategic interaction and aggregate incentives, J. Math. Econom., 49, 183-188, (2013) · Zbl 1284.91489
[8] Bergemann, D.; Morris, S., Robust predictions in games with incomplete information, Econometrica, 81, 1251-1308, (2013) · Zbl 1371.91007
[9] Blume, L. E.; Brock, W. A.; Durlauf, S. N.; Jayaraman, R., Linear social interactions models, J. Polit. Econ., 123, 444-496, (2015)
[10] Bonacich, P., Power and centrality: A family of measures, Am. J. Sociol., 92, 1170-1182, (1987)
[11] Calvó-Armengol, A.; de Martí, J., Information gathering in organizations: equilibrium, welfare and optimal network structure, J. Eur. Econ. Assoc., 7, 116-161, (2009)
[12] Calvó-Armengol, A.; de Martí, J.; Prat, Andrea, Communication and influence, Theor. Econ., 10, 649-690, (2015) · Zbl 1395.91064
[13] Calvó-Armengol, A.; Patacchini, E.; Zenou, Y., Peer effects and social networks in education, Rev. Econom. Stud., 76, 1239-1267, (2009) · Zbl 1187.91163
[14] Calvó-Armengol, A.; Zenou, Y., Social networks and crime decisions. the role of social structure in facilitating delinquent behavior, Internat. Econom. Rev., 45, 939-958, (2004)
[15] Cohen-Cole, E., Patacchini, E., Zenou, Y., 2011. Systemic risk and network formation in the interbank market. CEPR Discussion Paper No. 8332.
[16] Denbee, E., Julliard, C., Li, Y., Yuan, K., 2014. Network risk and key players: A structural analysis of interbank liquidity. Unpublished manuscript, London School of Economics and Political Science.
[17] Elliott, M. L.; Golub, B.; Jackson, M. O., Financial networks and contagion, Amer. Econ. Rev., 104, 3115-3153, (2014)
[18] Galeotti, A.; Ghiglino, C.; Squintani, F., Strategic information transmission networks, J. Econom. Theory, 148, 1751-1769, (2013) · Zbl 1296.91054
[19] Galeotti, A.; Goyal, S.; Jackson, M. O.; Vega-Redondo, F.; Yariv, L., Network games, Rev. Econom. Stud., 77, 218-244, (2010) · Zbl 1197.91168
[20] Golub, B.; Jackson, M. O., Naï ve learning in social networks: convergence, influence, and the wisdom of crowds, Amer. Econ. J.: Macroecon., 2, 112-149, (2010)
[21] Golub, B.; Jackson, M. O., How homophily affects the speed of learning and best-response dynamics, Quart. J. Econ., 127, 1287-1338, (2012)
[22] Goyal, S., Connections: an introduction to the economics of networks, (2007), Princeton University Press Princeton · Zbl 1138.91005
[23] Goyal, S., Learning in networks, (Benhabib, J.; Bisin, A.; Jackson, M. O., Handbook of Social Economics Volume 1A, (2011), Elsevier Science Amsterdam), 679-727
[24] Goyal, S.; Moraga-Gonzalez, J. L., R&D networks, Rand J. Econ., 32, 686-707, (2001)
[25] Hagenbach, J.; Koessler, F., Strategic communication networks, Rev. Econom. Stud., 77, 1072-1099, (2010) · Zbl 1231.91042
[26] Ioannides, Y. M., From neighborhoods to nations: the economics of social interactions, (2012), Princeton University Press Princeton
[27] Jackson, M. O., Social and economic networks, (2008), Princeton University Press Princeton, NJ · Zbl 1149.91051
[28] Jackson, M. O., An overview of social networks and economic applications, (Benhabib, J.; Bisin, A.; Jackson, M. O., Handbook of Social Economics Volume 1A, (2011), Elsevier Science Amsterdam), 511-579
[29] Jackson, M.O., Rogers, B., Zenou, Y., 2015. The economic consequences of social network structure. CEPR Discussion Paper 10406.
[30] Jackson, M. O.; Yariv, L., The diffusion of behavior and equilibrium structure properties on social networks, Amer. Econ. Rev. Pap. Proc., 97, 92-98, (2007)
[31] Jackson, M. O.; Yariv, L., Diffusion, strategic interaction, and social structure, (Benhabib, J.; Bisin, A.; Jackson, M. O., Handbook of Social Economics Volume 1A, (2011), Elsevier Science Amsterdam), 645-678
[32] Jackson, M. O.; Zenou, Y., Games on networks, (Young, P.; Zamir, S., Handbook of Game Theory, Vol. 4, (2015), Elsevier Publisher Amsterdam), 91-157
[33] Katz, L., A new status index derived from sociometric analysis, Psychometrica, 18, 39-43, (1953) · Zbl 0053.27606
[34] König, M.D., Liu, X., Zenou, Y., 2014. R&D networks: Theory, empirics and policy implications. CEPR Discussion Paper No. 9872.
[35] Lindquist, M.J., Zenou, Y., 2014. Key players in co-offending networks. CEPR Discussion Paper No. 9889.
[36] Liu, X.; Patacchini, E.; Zenou, Y., Endogenous peer effects: local aggregate or local average?, J. Econ. Behav. Organ., 103, 39-59, (2014)
[37] Liu, X., Patacchini, E., Zenou, Y., Lee, L.-F., 2012. Criminal networks: Who is the key player? CEPR Discussion Paper No. 8772.
[38] Meyer, C. D., Matrix analysis and applied linear algebra, (2001), American Mathematical Society Philadelphia, PA
[39] Monderer, D.; Shapley, L. S., Potential games, Games Econom. Behav., 14, 124-143, (1996) · Zbl 0862.90137
[40] Ui, T., Bayesian potentials and information structures: team decision problems revisited, Int. J. Econ. Theory, 5, 271-291, (2009)
[41] van Heumen, R.; Peleg, B.; Tijs, S.; Borm, P., Axiomatic characterizations of solutions for Bayesian games, Theory and Decision, 40, 103-130, (1996) · Zbl 0848.90140
[42] Zenou, Y., Networks in economics, (Wright, J. D., International Encyclopedia of Social and Behavioral Sciences, (2015), Elsevier Publisher Oxford), 572-581
[43] Zhou, J.; Chen, Y.-J., Key leaders in social networks, J. Econom. Theory, 157, 212-235, (2015) · Zbl 1330.91169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.