×

Coupled flapwise-chordwise-axial-torsional dynamic responses of rotating pre-twisted and inclined cantilever beams subject to the base excitation. (English) Zbl 1422.74063

Summary: A rotating pre-twisted and inclined cantilever beam model (RPICBM) with the flapwise-chordwise-axial-torsional coupling is established with the Hamilton principle and the finite element (FE) method. The effectiveness of the model is verified via comparisons with the literatures and the FE models in ANSYS. The effects of the setting and pre-twisted angles on the dynamic responses of the RPICBM are analyzed. The results show that: (i) the increase in the setting or pre-twisted angle results in the increases in the first-order flapwise and torsional frequencies while the decrease in the first-order chordwise frequency under rotating conditions; (ii) a positive/negative setting angle leads to a positive/negative constant component, while a positive/negative pre-twisted angle leads to a negative/positive constant component; (iii) when the rotation speed is non-zero, the pre-twisted angle or non-zero setting angle will result in the coupled flapwise-chordwise-axial-torsional vibration of the RPICBM under axial base excitation.

MSC:

74K10 Rods (beams, columns, shafts, arches, rings, etc.)
74H45 Vibrations in dynamical problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics

Software:

ANSYS; APDL
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] YARDIMOGLU, B. and YILDIRIM, T. Finite element model for vibration analysis of pre-twisted Timoshenko beam. Journal of Sound and Vibration, 273, 741-754 (2004) · doi:10.1016/j.jsv.2003.05.003
[2] YANG, X. D., WANG, S. W., ZHANG, W., QIN, Z. H., and YANG, T. Z. Dynamic analysis of a rotating tapered cantilever Timoshenko beam based on the power series method. Applied Mathematics and Mechanics (English Edition), 38(10), 1425-1438 (2017) https://doi.org/10.1007/s10483-017-2249-6 · Zbl 1374.74132 · doi:10.1007/s10483-017-2249-6
[3] RAO, J. S. and CARNEGIE, W. Solution of the equations of motion of coupled-bending bending torsion vibrations of turbine blades by the method of Ritz-Galerkin. International Journal of Mechanical Sciences, 12, 875-882 (1970) · Zbl 0228.73097 · doi:10.1016/0020-7403(70)90024-X
[4] HOUBOLT, J. C. and BROOKS, G. W. Differential equations of motion for combined flapwise bending, chordwise bending, and torsion of twisted nonuniform rotor blades. NACA Report, TN 3905, NASA Langley Research Center, Hampton (1958)
[5] SKAR, G. and SABUNCU, M. Dynamic stability of a rotating asymmetric cross-section blade subjected to an axial periodic force. International Journal of Mechanical Sciences, 45, 1467-1482 (2003) · Zbl 1045.74546 · doi:10.1016/j.ijmecsci.2003.10.006
[6] YANG, X. D., WANG, S. W., ZHANG, W., YANG, T. Z., and LIM, C. W. Model formulation and modal analysis of a rotating elastic uniform Timoshenko beam with setting angle. European Journal of Mechanics-A/Solids, 72, 209-222 (2018) · Zbl 1406.74415 · doi:10.1016/j.euromechsol.2018.05.014
[7] RAFIEE, M., NITZSCHE, F., and LABROSSE, M. Dynamics, vibration and control of rotating composite beams and blades: a critical review. Thin-Walled Structures, 119, 795-819 (2017) · doi:10.1016/j.tws.2017.06.018
[8] QIN, Y., LI, X., YANG, E. C., and LI, Y. H. Flapwise free vibration characteristics of a rotating composite thin-walled beam under aerodynamic force and hygrothermal environment. Composite Structures, 153, 490-503 (2016) · doi:10.1016/j.compstruct.2016.06.057
[9] TIAN, J. J., SU, J. P., ZHOU, K., and HUA, H. X. A modified variational method for nonlinear vibration analysis of rotating beams including Coriolis effects. Journal of Sound and Vibration, 426, 258-277 (2018) · doi:10.1016/j.jsv.2018.04.027
[10] LIN, S. C. and HSIAO, K. M.4 Vibration analysis of a rotating Timoshenko beam. Journal of Sound and Vibration, 240, 303-322 (2001) · Zbl 1237.74122 · doi:10.1006/jsvi.2000.3234
[11] YOUNG, T. H. Dynamic response of a pretwisted, tapered beam with non-constant rotating speed. Journal of Sound and Vibration, 150, 435-446 (1991) · doi:10.1016/0022-460X(91)90896-R
[12] QIN, Y., WANG, L., and LI, Y. H. Coupled vibration characteristics of a rotating composite thin-walled beam subjected to aerodynamic force in hygrothermal environment. International Journal of Mechanical Sciences, 140, 260-270 (2018) · doi:10.1016/j.ijmecsci.2018.03.002
[13] MA, H., XIE, F. T., NAI, H. Q., and WEN, B. C. Vibration characteristics analysis of rotating shrouded blades with impacts. Journal of Sound and Vibration, 378, 92-108 (2016) · doi:10.1016/j.jsv.2016.05.038
[14] XIE, F. T., MA, H., CUI, C., and WEN, B. C. Vibration response comparison of twisted shrouded blades using different impact models. Journal of Sound and Vibration, 397, 171-191 (2017) · doi:10.1016/j.jsv.2017.02.056
[15] ŞKAR, G. and SABUNCU, M. Buckling and dynamic stability of a rotating pretwisted asymmetric cross-section blade subjected to an axial periodic force. Finite Elements in Analysis and Design, 40, 1399-1415 (2004) · doi:10.1016/j.finel.2003.09.005
[16] SABUNCU, M. and EVRAN, K. Dynamic stability of a rotating pre-twisted asymmetric cross-section Timoshenko beam subjected to an axial periodic force. International Journal of Mechanical Sciences, 48, 579-590 (2006) · Zbl 1192.74198 · doi:10.1016/j.ijmecsci.2006.01.010
[17] OZGUMUS, O. O. and KAYA, M. O. Energy expressions and free vibration analysis of a rotating Timoshenko beam featuring bending-bending-torsion coupling. Archive of Applied Mechanics, 83, 97-108 (2013) · Zbl 1293.74196 · doi:10.1007/s00419-012-0634-4
[18] SINHA, S. K. Combined Torsional-bending-axial dynamics of a twisted rotating cantilever Timoshenko beam with contact-impact loads at the free end. Journal of Applied Mechanics, 74, 505-522 (2006) · Zbl 1111.74643 · doi:10.1115/1.2423035
[19] GEORGIADES, F., LATALSKI, J., and WARMINSKI, J. Equations of motion of rotating composite beam with a nonconstant rotation speed and an arbitrary preset angle. Meccanica, 49, 1833-1858 (2014) · Zbl 1299.74104 · doi:10.1007/s11012-014-9926-9
[20] Banerjee, S.; Rao, J. S., Coupled bending-torsion vibrations of rotating blades (1976), New Orleans
[21] BANERJEE, J. R. Development of an exact dynamic stiffness matrix for free vibration analysis of a twisted Timoshenko beam. Journal of Sound and Vibration, 270, 379-401 (2004) · Zbl 1236.74139 · doi:10.1016/S0022-460X(03)00633-3
[22] BANERJEE, J. R., SU, H., and JACKSON, D. R. Free vibration of rotating tapered beams using the dynamic stiffness method. Journal of Sound and Vibration, 298, 1034-1054 (2006) · doi:10.1016/j.jsv.2006.06.040
[23] BANERJEE, J. R. and JACKSON, D. R. Free vibration of a rotating tapered Rayleigh beam: a dynamic stiffness method of solution. Computers and Structures, 124, 11-20 (2013) · doi:10.1016/j.compstruc.2012.11.010
[24] STAFFORD, R. O. and GIURGIUTIU, V. Semi-analytic methods for rotating Timoshenko beams. International Journal of Mechanical Sciences, 17, 719-727 (1975) · Zbl 0318.73045 · doi:10.1016/0020-7403(75)90075-2
[25] KAYA, M. O. Free vibration analysis of a rotating Timoshenko beam by differential transform method. Aircraft Engineering and Aerospace Technology, 78, 194-203 (2006) · doi:10.1108/17488840610663657
[26] QIN, Y. and LI, Y. H. Influences of hygrothermal environment and installation mode on vibration characteristics ofa rotating laminated composite beam. Mechanical Systems and Signal Processing, 91, 23-40 (2017) · doi:10.1016/j.ymssp.2016.12.041
[27] DU, H., LIM, M. K., and LIEW, K. M. A power series solution for vibration of a rotating Timoshenko beam. Journal of Sound and Vibration, 175, 505-523 (1994) · Zbl 1147.74334 · doi:10.1006/jsvi.1994.1342
[28] FANG, J. S. and ZHOU, D. Free vibration analysis of rotating axially functionally graded tapered Timoshenko beams. International Journal of Structural Stability and Dynamics, 16, 1-9 (2015)
[29] RAO, S. S. and GUPTA, R. S. Finite element vibration analysis of rotating Timoshenko beams. Journal of Sound and Vibration, 242, 103-124 (2001) · Zbl 1237.74188 · doi:10.1006/jsvi.2000.3362
[30] BAZOUNE, A. Effect of tapering on natural frequencies of rotating beams. Shock and Vibration, 14, 169-179 (2007) · doi:10.1155/2007/865109
[31] REDDY, J. N. Energy Principles and Variational Methods in Applied Mechanics, John Wiley and Sons, New York, 475-483 (2002)
[32] SUN, Q., MA, H., ZHU, Y. P., HAN, Q. K., and WEN, B. C. Comparison of rubbing induced vibration responses using varying-thickness-twisted shell and solid-element blade models. Mechanical Systems and Signal Processing, 108, 1-20 (2018) · doi:10.1016/j.ymssp.2018.02.002
[33] HE, Q., XUAN, H. J., LIU, L. L., HONG, W. R., and WU, R. R. Perforation of aero-engine fan casing by a single rotating blade. Aerospace Science and Technology, 25, 234-241 (2013) · doi:10.1016/j.ast.2012.01.010
[34] HAMMOND, C. E. An application of Floquet theory to prediction of mechanical instability. Journal of the American Helicopter Society, 19, 14-23 (1974) · doi:10.4050/JAHS.19.14
[35] TAN, T. H., LEE, H. P., and LENG, G. S. B. Dynamic stability of a radially rotating beam subjected to base excitation. Computer Methods in Applied Mechanics and Engineering, 146, 265-279 (1997) · Zbl 0898.73031 · doi:10.1016/S0045-7825(96)01238-8
[36] OZGUMUS, O. O. and KAYA, M. O. Energy expressions and free vibration analysis of a rotating double tapered Timoshenko beam featuring bending-torsion coupling. International Journal of Engineering Science, 45, 562-586 (2007) · Zbl 1213.74193 · doi:10.1016/j.ijengsci.2007.04.005
[37] HODGES, D. H. Torsion of pretwisted beams due to axial loading. Journal of Applied Mechanics, 47, 393-397 (1980) · Zbl 0432.73037 · doi:10.1115/1.3153675
[38] BAZOUNE, A., KHULIEF, Y. A., and STEPHEN, N. G. Shape functions of three-dimensional Timoshenko beam element. Journal of Sound and Vibration, 259, 473-480 (2003) · doi:10.1006/jsvi.2002.5122
[39] WANG, M. Z., WANG, W., and WU, J. K. Course of Elastic Mechanics (in Chinese), Beijing University Press, Beijing, 146-150 (2002)
[40] WILLIAM, C. Vibrations of pre-twisted cantilever blading. Proceedings of the Institution of Mechanical Engineers, 173, 343-374 (1959) · doi:10.1243/PIME_PROC_1959_173_038_02
[41] RAO, J. S. Flexural vibration of pretwisted tapered cantilever blades. Journal of Engineering for Industry, 94, 343-346 (1972) · doi:10.1115/1.3428148
[42] ZENG, J., CHEN, K. K., MA, H., DUAN, T. T., and WEN, B. C. Vibration response analysis of a cracked rotating compressor blade during run-up process. Mechanical Systems and Signal Processing, 118, 568-583 (2019) · doi:10.1016/j.ymssp.2018.09.008
[43] ANSYS Inc. ANSYS Mechanical APDL and Mechanical Applications Theory Reference, ANSYS Release 13.0, ANSYS Inc., Lincoln (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.