×

Uniform bounds on the 1-norm of the inverse of lower triangular Toeplitz matrices. (English) Zbl 1230.15002

Consider the lower triangular \(\left( n+1\right) \times \left( n+1\right) \) Toeplitz matrix \[ T_{n}=\left( \begin{matrix} b_{0} & 0 & \cdots & 0 \\ b_{1} & b_{0} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ b_{n} & b_{n-1} & \cdots & b_{0} \end{matrix} \right) \] where \(b_{0}\geq b_{1}\geq \cdots \geq b_{n}\geq b\geq 0\) and \( \lim_{n\rightarrow \infty }b_{n}=b=0\). The authors provide a sharp uniform upper bound for \(\left\| T_{n}^{-1}\right\| _{\infty }\). In particular case where \[ b_{0}=\frac{1}{\sqrt{2}},b_{1}=\frac{\sqrt{3}-1}{\sqrt{2}},b_{2}=\frac{\sqrt{ 5}-\sqrt{3}}{\sqrt{2}},\dots,b_{n}=\frac{\sqrt{2n+1}-\sqrt{2n-1}}{\sqrt{2}} \] then it is proven that \[ \left\| T_{n}^{-1}\right\| _{1}\leq 2\sqrt{2}\left( 5-\sqrt{3}-\sqrt{5} \right) \] and thus a solution is given to the GKM conjecture. Furthermore, in case where \[ b_{0}=1,b_{1}=2^{1-a}-1,b_{2}=3^{1-a}-2^{1-a},\dots,b_{n}=\left( n+1\right) ^{1-a}-n^{1-a} \] with \(a\in \left( 0,1\right) \), upper bounds are given for \(\left\| T_{n}^{-1}\right\| _{1}\) under certain conditions, by providing in this way a partial answer to the Brunner’s one-point collocation problem.

MSC:

15A09 Theory of matrix inversion and generalized inverses
39A10 Additive difference equations
65R20 Numerical methods for integral equations
34K28 Numerical approximation of solutions of functional-differential equations (MSC2010)
47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
74B10 Linear elasticity with initial stresses
34K06 Linear functional-differential equations
90C33 Complementarity and equilibrium problems and variational inequalities (finite dimensions) (aspects of mathematical programming)
15B57 Hermitian, skew-Hermitian, and related matrices
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Berenhaut, K. S.; Morton, D. C.; Fletcher, P. T., Bounds for inverses of triangular Toeplitz matrices, SIAM J. Matrix Anal. Appl., 27, 212-217 (2005) · Zbl 1091.15031
[2] Berenhaut, K. S.; Guy, R. T.; Vish, N. G., A 1-norm bound for inverses of triangular matrices with monotone entries, Banach J. Math. Anal., 2, 1, 112-121 (2008) · Zbl 1147.15018
[3] Brunner, H., On systems of Volterra difference equations associated with collocation methods for weakly singular Volterra integral equations, (Cheng, S. S.; Elaydi, S.; Ladas, G., New Developments in Difference Equations and Applications (Taipei 1997) (1999), Amsterdam: Amsterdam Gordon and Breach), 75-92 · Zbl 0938.65154
[4] Brunner, H., Discretization of Volterra integral equations with weakly singular kernels, Fields Inst. Commun., 42, 419-422 (2004) · Zbl 1060.65683
[5] Brunner, H., Collocation Methods for Volterra Integral and Related Functional Differential Equations (2004), C.U.P: C.U.P Cambridge · Zbl 1059.65122
[6] Chen, C.; Mangasarian, O. L., A class of smooth functions for nonlinear and mixed complementarity problems, Comput. Optim. Appl., 5, 97-138 (1996) · Zbl 0859.90112
[7] Eggermont, P. P.B., A new analysis of the trapezoidal-discretization method for the numerical solution of Abel-type integral equations, J. Integral Equations, 3, 317-332 (1981) · Zbl 0469.65093
[8] Gauthier, A.; Knight, P. A.; McKee, S., The Hertz contact problem, coupled Volterra integral equations, and a linear complementarity problem, J. Comput. Appl. Math., 206, 1, 322-340 (2007) · Zbl 1127.74030
[9] Hardy, G. H., Divergent Series (1949), Oxford University Press · Zbl 0032.05801
[10] P.A.W. Holyhead, Direct Methods for the Numerical Solution of Volterra Integral Equations of the First Kind, Ph.D. Thesis, University of Southampton, 1976.; P.A.W. Holyhead, Direct Methods for the Numerical Solution of Volterra Integral Equations of the First Kind, Ph.D. Thesis, University of Southampton, 1976. · Zbl 0324.65059
[11] Jurkat, W. B., Questions of signs in power series, Proc. Amer. Math. Soc., 5, 6, 964-970 (1954) · Zbl 0059.06105
[12] Vecchio, A., A bound for the inverse of a lower triangular Toeplitz matrix, SIAM J. Matrix Anal. Appl., 24, 1167-1174 (2003) · Zbl 1040.15017
[13] Vecchio, A.; Mallik, R. K., Bounds on the inverses of nonnegative triangular matrices with monotonicity properties, Linear and Multilinear Algebra, 55, 4, 365-379 (2007) · Zbl 1122.15008
[14] Weiss, R.; Anderssen, R. S., A product integration method for a class of singular first kind Volterra equations, Numer. Math., 18, 5, 442-456 (1972) · Zbl 0228.65086
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.