Yu, Jinghu Hausdorff dimension of a sub-self-affine set. (Chinese. English summary) Zbl 0960.28002 J. Hunan Univ., Nat. Sci. 26, No. 1, 8-12 (1999). In this note, the author gives the Hausdorff dimension of a sub-self-affine set of an affine set. Let \(S_1,\dots, S_N\) be affine compression sets on \(\mathbb{R}^n\), \[ S_i(x)= T_i(x)+ a_i,\quad i= 1,2,\dots, N, \] where \(T_i\) is an \(n\)th nonsingular matrix and \(a_i\in \mathbb{R}^n\); a compact set \(E\subset \mathbb{R}^n\) is called a sub-self-affine set of an affine set if \(E\subseteq \sum^N_{i=1} S_i(E)\), denoted by \(E(a)\), \(a= (a_1,\dots, a_N)\). The main result is: For the Hausdorff dimension dim of \(E(a)\), we have \[ \dim(E(a))= \min\{n, d_k(T_1,\dots, T_N)\}, \] here \(d_k(T_1,\dots, T_N)\) is a special value depending on \(T_1,\dots, T_N\). Reviewer: Su Weiyi (Nanjing) MSC: 28A78 Hausdorff and packing measures 28A80 Fractals Keywords:compression mapping; Hausdorff dimension; sub-self-affine set PDF BibTeX XML Cite \textit{J. Yu}, J. Hunan Univ., Nat. Sci. 26, No. 1, 8--12 (1999; Zbl 0960.28002)