×

Modeling via peridynamics for large deformation and progressive fracture of hyperelastic materials. (English) Zbl 07644196

Summary: Hyperelastic materials are frequently observed in the natural world and engineering applications such as rubbers and animal soft tissues. Modeling large deformation and progressive fracture of these materials is challenging for grid-based methods due to the severe mesh distortions at crack tips. To address this problem, we proposed a novel meshfree framework using bond-based peridynamics (PD) based on finite deformation theory. The proposed modeling framework has the following novelties: (1) An original bond strain, derived from the spectrum representation of hyperelastic models is used to describe the nonlinear bond force-stretch relationship, which gives more concise and robust solutions to large deformation problems; (2) A numerical damping parameter inspired by the mass-dashpot-spring system is developed to endow the proposed framework with numerical advantages in terms of enhancing the stability of explicit time integration in modeling quasi-static problems; (3) It outperforms grid-based methods in capturing notable features like non-smooth crack surfaces, secondary damages, and materials fragmentations. The capability of our framework was successfully validated via several examples, including large deformation, crack initiation and propagation tests of specimens with various notches and eccentric holes. Besides, the numerical performance of our model to capture the crack deflection in laminate rubber specimens was also tested, with results showing good consistency with experimental observations. This framework is compatible with diverse hyperelastic models and sheds new light on modeling of elastomer-hydrogel composites and soft tissues.

MSC:

74-XX Mechanics of deformable solids
92-XX Biology and other natural sciences
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Fazekas, B.; Goda, T. J., Determination of the hyper-viscoelastic model parameters of open-cell polymer foams and rubber-like materials with high accuracy, Mater. Des., 156, 596-608 (2018)
[2] Dal, H.; Kaliske, M., A micro-continuum-mechanical material model for failure of rubber-like materials: Application to ageing-induced fracturing, J. Mech. Phys. Solids, 57, 1340-1356 (2009) · Zbl 1425.74052
[3] Liu, Z.; Hong, W.; Suo, Z.; Swaddiwudhipong, S.; Zhang, Y., Modeling and simulation of buckling of polymeric membrane thin film gel, Comput. Mater. Sci., 49, S60-S64 (2010)
[4] Hong, W.; Zhao, X.; Zhou, J.; Suo, Z., A theory of coupled diffusion and large deformation in polymeric gels, J. Mech. Phys. Solids, 56, 1779-1793 (2008) · Zbl 1162.74313
[5] Yin, B.; Sun, W.; Zhang, X.; Liew, K. M., Deciphering structural biological materials: Viewing from the mechanics perspective and their prospects, Composites B, Article 110213 pp. (2022)
[6] Nuñez-Labielle, A.; Cante, J.; Huespe, A. E.; Oliver, J., Towards shock absorbing hyperelastic metamaterial design.(i) macroscopic scale: Computational shock-capturing, Comput. Methods Appl. Mech. Engrg., 393, Article 114732 pp. (2022) · Zbl 1507.74185
[7] Jia, Y.; Zhou, Z.; Jiang, H.; Liu, Z., Characterization of fracture toughness and damage zone of double network hydrogels, J. Mech. Phys. Solids, 169, Article 105090 pp. (2022)
[8] Xu, S.; Liu, Z., A nonequilibrium thermodynamics approach to the transient properties of hydrogels, J. Mech. Phys. Solids, 127, 94-110 (2019)
[9] Nolan, D. R.; Gower, A. L.; Destrade, M.; Ogden, R. W.; McGarry, J., A robust anisotropic hyperelastic formulation for the modelling of soft tissue, J. Mech. Behav. Biomed. Mater., 39, 48-60 (2014)
[10] Wang, S.; Chester, S. A., Experimental characterization and continuum modeling of inelasticity in filled rubber-like materials, Int. J. Solids Struct., 136, 125-136 (2018)
[11] Landauer, A. K.; Li, X.; Franck, C.; Henann, D. L., Experimental characterization and hyperelastic constitutive modeling of open-cell elastomeric foams, J. Mech. Phys. Solids, 133, Article 103701 pp. (2019)
[12] Treloar, L., The elasticity of a network of long-chain molecules. I, Trans. Faraday Soc., 39, 36-41 (1943)
[13] Ogden, R. W., Large deformation isotropic elasticity-on the correlation of theory and experiment for incompressible rubberlike solids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 326, 565-584 (1972) · Zbl 0257.73034
[14] Ogden, R. W., Non-Linear Elastic Deformations (1997), Courier Corporation
[15] Mooney, M., A theory of large elastic deformation, J. Appl. Phys., 11, 582-592 (1940) · JFM 66.1021.04
[16] Rivlin, R., Large elastic deformations of isotropic materials. III. Some simple problems in cyclindrical polar co-ordinates, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 240, 509-525 (1948) · Zbl 0029.32701
[17] Arruda, E. M.; Boyce, M. C., A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, J. Mech. Phys. Solids, 41, 389-412 (1993) · Zbl 1355.74020
[18] Talamini, B.; Mao, Y.; Anand, L., Progressive damage and rupture in polymers, J. Mech. Phys. Solids, 111, 434-457 (2018) · Zbl 1441.74025
[19] Zhao, X., A theory for large deformation and damage of interpenetrating polymer networks, J. Mech. Phys. Solids, 60, 319-332 (2012)
[20] Guo, Q.; Zaïri, F., A micromechanics-based model for deformation-induced damage and failure in elastomeric media, Int. J. Plast., 140, Article 102976 pp. (2021)
[21] Brighenti, R.; Rabczuk, T.; Zhuang, X., Phase field approach for simulating failure of viscoelastic elastomers, Eur. J. Mech. A Solids, 85, Article 104092 pp. (2021) · Zbl 1478.74078
[22] Lei, J.; Xu, S.; Li, Z.; Liu, Z., Study on large deformation behavior of polyacrylamide hydrogel using dissipative particle dynamics, Frontiers in Chemistry, 8, 115 (2020)
[23] Lei, J.; Li, Z.; Xu, S.; Liu, Z., A mesoscopic network mechanics method to reproduce the large deformation and fracture process of cross-linked elastomers, J. Mech. Phys. Solids, 156, Article 104599 pp. (2021)
[24] Huang, R.; Zheng, S.; Liu, Z.; Ng, T. Y., Recent advances of the constitutive models of smart materials—Hydrogels and shape memory polymers, International Journal of Applied Mechanics, 12, Article 2050014 pp. (2020)
[25] Melly, S. K.; Liu, L.; Liu, Y.; Leng, J., A review on material models for isotropic hyperelasticity, International Journal of Mechanical System Dynamics, 1, 71-88 (2021)
[26] Horgan, C. O.; Schwartz, J. G., Constitutive modeling and the trousers test for fracture of rubber-like materials, J. Mech. Phys. Solids, 53, 545-564 (2005) · Zbl 1122.74494
[27] Belytschko, T.; Liu, W. K.; Moran, B.; Elkhodary, K., Nonlinear Finite Elements for Continua and Structures (2014), John wiley & sons
[28] Frischkorn, J.; Reese, S., Solid-beam finite element analysis of nitinol stents, Comput. Methods Appl. Mech. Engrg., 291, 42-63 (2015) · Zbl 1423.74478
[29] Huynh, H. D.; Tran, P.; Zhuang, X.; Nguyen-Xuan, H., An extended polygonal finite element method for large deformation fracture analysis, Eng. Fract. Mech., 209, 344-368 (2019)
[30] Zaafouri, M.; Wali, M.; Abid, S.; Jamal, M.; Dammak, F., The extended finite element method for cracked incompressible hyperelastic structures analysis, (Conference on Multiphysics Modelling and Simulation for Systems Design (2014), Springer), 531-540
[31] Foucard, L.; Aryal, A.; Duddu, R.; Vernerey, F., A coupled Eulerian-Lagrangian extended finite element formulation for simulating large deformations in hyperelastic media with moving free boundaries, Comput. Methods Appl. Mech. Engrg., 283, 280-302 (2015) · Zbl 1423.74127
[32] Miehe, C.; Schänzel, L.-M., Phase field modeling of fracture in rubbery polymers. Part I: Finite elasticity coupled with brittle failure, J. Mech. Phys. Solids, 65, 93-113 (2014) · Zbl 1323.74012
[33] Loew, P. J.; Peters, B.; Beex, L. A., Rate-dependent phase-field damage modeling of rubber and its experimental parameter identification, J. Mech. Phys. Solids, 127, 266-294 (2019)
[34] Wu, J.; McAuliffe, C.; Waisman, H.; Deodatis, G., Stochastic analysis of polymer composites rupture at large deformations modeled by a phase field method, Comput. Methods Appl. Mech. Engrg., 312, 596-634 (2016) · Zbl 1439.74097
[35] Tang, S.; Zhang, G.; Guo, T. F.; Guo, X.; Liu, W. K., Phase field modeling of fracture in nonlinearly elastic solids via energy decomposition, Comput. Methods Appl. Mech. Engrg., 347, 477-494 (2019) · Zbl 1440.74038
[36] Mandal, T. K.; Gupta, A.; Nguyen, V. P.; Chowdhury, R.; de Vaucorbeil, A., A length scale insensitive phase field model for brittle fracture of hyperelastic solids, Eng. Fract. Mech., 236, Article 107196 pp. (2020)
[37] Ang, I.; Bouklas, N.; Li, B., Stabilized formulation for phase-field fracture in nearly incompressible hyperelasticity, Internat. J. Numer. Methods Engrg. (2022)
[38] Ma, Z.; Feng, X.; Hong, W., Fracture of soft elastic foam, J. Appl. Mech., 83, Article 031007 pp. (2016)
[39] Ye, J. Y.; Zhang, L. W.; Reddy, J., Large strained fracture of nearly incompressible hyperelastic materials: Enhanced assumed strain methods and energy decomposition, J. Mech. Phys. Solids, 139, Article 103939 pp. (2020)
[40] Peng, F.; Huang, W.; Zhang, Z.-Q.; Guo, T. F.; Ma, Y. E., Phase field simulation for fracture behavior of hyperelastic material at large deformation based on edge-based smoothed finite element method, Eng. Fract. Mech., 238, Article 107233 pp. (2020)
[41] Tian, F.; Tang, X.; Xu, T.; Li, L., An adaptive edge-based smoothed finite element method (ES-FEM) for phase-field modeling of fractures at large deformations, Comput. Methods Appl. Mech. Engrg., 372, Article 113376 pp. (2020) · Zbl 1506.74367
[42] Tian, F.; Zeng, J.; Zhang, M.; Li, L., Mixed displacement-pressure-phase field framework for finite strain fracture of nearly incompressible hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 394, Article 114933 pp. (2022) · Zbl 1507.74038
[43] Liu, F.; Wu, Q.; Cheng, Y., A meshless method based on the nonsingular weight functions for elastoplastic large deformation problems, International Journal of Applied Mechanics, 11, Article 1950006 pp. (2019)
[44] Liew, K. M.; Ng, T.; Wu, Y., Meshfree method for large deformation analysis-a reproducing kernel particle approach, Eng. Struct., 24, 543-551 (2002)
[45] Liew, K. M.; Pan, Z.; Zhang, L.-W., The recent progress of functionally graded CNT reinforced composites and structures, Science China Physics, Mechanics & Astronomy, 63, 1-17 (2020)
[46] Liew, K. M.; Zhao, X.; Ferreira, A. J., A review of meshless methods for laminated and functionally graded plates and shells, Compos. Struct., 93, 2031-2041 (2011)
[47] Żur, K. K.; Faghidian, S. A.; Reddy, J.; Liew, K. M.; Ferreira, A., Special issue on meshless numerical approaches to mechanics of composite nanoscale and microscale structures, 31-32 (2022), Elsevier
[48] Liu, F.; Cheng, Y., The improved element-free Galerkin method based on the nonsingular weight functions for elastic large deformation problems, International Journal of Computational Materials Science and Engineering, 7, Article 1850023 pp. (2018)
[49] Li, D.; Liew, K. M.; Cheng, Y., Analyzing elastoplastic large deformation problems with the complex variable element-free Galerkin method, Comput. Mech., 53, 1149-1162 (2014)
[50] Wu, Q.; Peng, P.; Cheng, Y., The interpolating element-free Galerkin method for elastic large deformation problems, Science China Technological Sciences, 64, 364-374 (2021)
[51] Silling, S. A., Reformulation of elasticity theory for discontinuities and long-range forces, J. Mech. Phys. Solids, 48, 175-209 (2000) · Zbl 0970.74030
[52] Silling, S. A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E., Peridynamic states and constitutive modeling, J. Elasticity, 88, 151-184 (2007) · Zbl 1120.74003
[53] Wang, Q.; Liew, K. M., Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures, Phys. Lett. A, 363, 236-242 (2007)
[54] Hu, Y.-G.; Liew, K. M.; Wang, Q.; He, X.; Yakobson, B., Nonlocal shell model for elastic wave propagation in single-and double-walled carbon nanotubes, J. Mech. Phys. Solids, 56, 3475-3485 (2008) · Zbl 1171.74373
[55] Ha, Y. D.; Bobaru, F., Characteristics of dynamic brittle fracture captured with peridynamics, Eng. Fract. Mech., 78, 1156-1168 (2011)
[56] Yang, D.; Dong, W.; Liu, X.; Yi, S.; He, X., Investigation on mode-i crack propagation in concrete using bond-based peridynamics with a new damage model, Eng. Fract. Mech., 199, 567-581 (2018)
[57] Hu, W.; Ha, Y. D.; Bobaru, F., Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites, Comput. Methods Appl. Mech. Engrg., 217, 247-261 (2012) · Zbl 1253.74008
[58] Abdoh, D.; Yin, B.; Kodur, V.; Liew, K. M., Computationally efficient and effective peridynamic model for cracks and fractures in homogeneous and heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 399, Article 115318 pp. (2022) · Zbl 1507.74049
[59] Rabczuk, T.; Ren, H., A peridynamics formulation for quasi-static fracture and contact in rock, Eng. Geol., 225, 42-48 (2017)
[60] Bobaru, F.; Ha, Y. D.; Hu, W., Damage progression from impact in layered glass modeled with peridynamics, Cent. Eur. J. Eng., 2, 551-561 (2012)
[61] Sun, W.-K.; Zhang, L.-W.; Liew, K. M., A smoothed particle hydrodynamics-peridynamics coupling strategy for modeling fluid-structure interaction problems, Comput. Methods Appl. Mech. Engrg., 371, Article 113298 pp. (2020) · Zbl 1506.74111
[62] Sun, W.-K.; Zhang, L.-W.; Liew, K. M., A coupled SPH-PD model for fluid-structure interaction in an irregular channel flow considering the structural failure, Comput. Methods Appl. Mech. Engrg., 401, Article 115573 pp. (2022) · Zbl 1507.74138
[63] Nguyen, C. T.; Oterkus, S., Ordinary state-based peridynamic model for geometrically nonlinear analysis, Eng. Fract. Mech., 224, Article 106750 pp. (2020)
[64] Behzadinasab, M.; Foster, J. T., A semi-Lagrangian constitutive correspondence framework for peridynamics, J. Mech. Phys. Solids, 137, Article 103862 pp. (2020) · Zbl 1441.70014
[65] Behzadinasab, M.; Foster, J. T., Revisiting the third sandia fracture challenge: a bond-associated, semi-lagrangian peridynamic approach to modeling large deformation and ductile fracture, Int. J. Fract., 224, 261-267 (2020)
[66] Li, Z.; Huang, D.; Yan, K.; Xu, Y., Large deformation analysis of functionally graded beam with variable cross-section by using peridynamic differential operator, Compos. Struct., 279, Article 114788 pp. (2022)
[67] Li, H.; Zheng, Y. G.; Zhang, Y. X.; Ye, H. F.; Zhang, H. W., Large deformation and wrinkling analyses of bimodular structures and membranes based on a peridynamic computational framework, Acta Mech. Sinica, 35, 1226-1240 (2019)
[68] Silling, S. A.; Bobaru, F., Peridynamic modeling of membranes and fibers, Int. J. Non-Linear Mech., 40, 395-409 (2005) · Zbl 1349.74231
[69] Bang, D.; Madenci, E., Peridynamic modeling of hyperelastic membrane deformation, J. Engineering Materials and Technology, 139, Article 031007 pp. (2017)
[70] Waxman, R.; Guven, I., Implementation of a neo-hookean material model in state-based peridynamics to represent nylon bead behavior during high-speed impact, AIAA Scitech 2020 Forum, 0725 (2020)
[71] Silling, S. A.; Askari, A., Peridynamic modeling of fracture in elastomers and composites (2010), Sandia National Laboratories (SNL), Albuquerque, NM, and Livermore, CA
[72] Huang, Y.; Oterkus, S.; Hou, H.; Oterkus, E.; Wei, Z.; Zhang, S., Peridynamic model for visco-hyperelastic material deformation in different strain rates, Contin. Mech. Thermodyn., 1-35 (2019)
[73] Roy, P.; Behera, D.; Madenci, E., Peridynamic simulation of finite elastic deformation and rupture in polymers, Eng. Fract. Mech., 236, Article 107226 pp. (2020)
[74] Behera, D.; Roy, P.; Madenci, E., Peridynamic correspondence model for finite elastic deformation and rupture in neo-hookean materials, Int. J. Non-Linear Mech., 126, Article 103564 pp. (2020)
[75] Bellido, J. C.; Cueto, J.; Mora-Corral, C., Bond-based peridynamics does not converge to hyperelasticity as the horizon goes to zero, J. Elasticity, 141, 273-289 (2020) · Zbl 1450.35249
[76] Kilic, B.; Madenci, E., An adaptive dynamic relaxation method for quasi-static simulations using the peridynamic theory, Theor. Appl. Fract. Mech., 53, 194-204 (2010)
[77] Ni, T.; Zaccariotto, M.; Zhu, Q.-Z.; Galvanetto, U., Static solution of crack propagation problems in peridynamics, Comput. Methods Appl. Mech. Engrg., 346, 126-151 (2019) · Zbl 1440.74034
[78] Hocine, N. A.; Abdelaziz, M. N.; Imad, A., Fracture problems of rubbers: J-integral estimation based upon \(\eta\) factors and an investigation on the strain energy density distribution as a local criterion, Int. J. Fract., 117, 1-23 (2002)
[79] Kumar, A.; Francfort, G. A.; Lopez-Pamies, O., Fracture and healing of elastomers: A phase-transition theory and numerical implementation, J. Mech. Phys. Solids, 112, 523-551 (2018)
[80] Mihai, L. A.; Goriely, A., How to characterize a nonlinear elastic material? A review on nonlinear constitutive parameters in isotropic finite elasticity, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 473, Article 20170607 pp. (2017) · Zbl 1404.74018
[81] Miehe, C.; Schaenzel, L.-M.; Ulmer, H., Phase field modeling of fracture in multi-physics problems. Part I. Balance of crack surface and failure criteria for brittle crack propagation in thermo-elastic solids, Comput. Methods Appl. Mech. Engrg., 294, 449-485 (2015) · Zbl 1423.74838
[82] Lee, W.; Yoo, Y.-H.; Shin, H., Reconsideration of crack deflection at planar interfaces in layered systems, Compos. Sci. Technol., 64, 2415-2423 (2004)
[83] Tian, F.; Zeng, J.; Tang, X.; Xu, T.; Li, L., A dynamic phase field model with no attenuation of wave speed for rapid fracture instability in hyperelastic materials, Int. J. Solids Struct., 202, 685-698 (2020)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.