×

zbMATH — the first resource for mathematics

Axioms for fuzzy bases of Hsueh fuzzy matroids. (English) Zbl 1361.05026
Summary: This paper attempts to study the properties of Hsueh fuzzy matroids. Two equivalent descriptions of the fuzzy augmentation property are given and fuzzy submatroids are introduced. Moreover, the existence of fuzzy bases for Hsueh fuzzy matroids is proved. Based on the properties of fuzzy bases, fuzzy base axioms for Hsueh fuzzy matroids are obtained. Additionally, an application of fuzzy base axioms is presented.
MSC:
05B35 Combinatorial aspects of matroids and geometric lattices
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Goetschel, Fuzzy matroids, Fuzzy Sets and Systems 27 pp 291– (1988) · Zbl 0651.05024 · doi:10.1016/0165-0114(88)90055-3
[2] Goetschel, Bases of fuzzy matroids, Fuzzy Sets and Systems 31 pp 253– (1989) · Zbl 0686.05013 · doi:10.1016/0165-0114(89)90007-9
[3] Goetschel, Fuzzy matroids and a greedy algorithm, Fuzzy Sets and Systems 37 pp 201– (1990) · Zbl 0736.05023 · doi:10.1016/0165-0114(90)90043-6
[4] Hsueh, On fuzzification of matroids, Fuzzy Sets and Systems 53 pp 317– (1993) · Zbl 0789.05020 · doi:10.1016/0165-0114(93)90403-5
[5] Li, Closure axioms for a class of fuzzy matroids and co-towers of matroids, Fuzzy Sets and Systems 158 pp 1246– (2007) · Zbl 1115.05013 · doi:10.1016/j.fss.2007.01.003
[6] Li, Connecttedness of refined GV-fuzzy matroids, Fuzzy Sets and Systems 161 pp 2709– (2010) · Zbl 1205.05042 · doi:10.1016/j.fss.2010.04.014
[7] Lian, The nullities for M-fuzzifying matroids, Applied Mathematics Letters 25 pp 279– (2012) · Zbl 1243.05057 · doi:10.1016/j.aml.2011.08.027
[8] Novak, On fuzzy independence set systems, Fuzzy Sets and Systems 91 pp 365– (1997) · Zbl 0921.04006 · doi:10.1016/S0165-0114(96)00147-9
[9] Oxley, Matroid Theory (1992)
[10] Yao, Basis axioms and circuits axioms for fuzzifying matroids, Fuzzy Sets and Systems 161 pp 3155– (2010) · Zbl 1205.05043 · doi:10.1016/j.fss.2010.07.006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.