×

zbMATH — the first resource for mathematics

Normalized Born approximation-based two-stage reconstruction algorithm for quantitative fluorescence molecular tomography. (English) Zbl 1254.92062
Summary: Fluorescence molecular tomography (FMT) is a promising technique for in vivo small animal imaging. In this paper, a two-stage reconstruction method based on normalized Born approximation is developed for FMT, which includes two steps for quantitative reconstruction. First, the localization of fluorescent fluorophore is determined by -norm regularization method. Then, in the location region of fluorophore, which is provided by the first stage, algebraic reconstruction technique (ART) is utilized for the fluorophore concentration reconstruction. The validity of the two-stage quantitative reconstruction algorithm is testified by simulation experiments on a 3D digital mouse atlas and physical experiments on a phantom. The results suggest that we are able to recover the fluorophore location and concentration.
MSC:
92C55 Biomedical imaging and signal processing
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. Ntziachristos, J. Ripoll, L. V. Wang, and R. Weissleder, “Looking and listening to light: the evolution of whole-body photonic imaging,” Nature Biotechnology, vol. 23, no. 3, pp. 313-320, 2005. · doi:10.1038/nbt1074
[2] J. Tian, J. Bai, X. P. Yan et al., “Multimodality molecular imaging: improving image quality,” IEEE Engineering in Medicine and Biology Magazine, vol. 27, no. 5, pp. 48-57, 2008. · doi:10.1109/MEMB.2008.923962
[3] V. Ntziachristos, “Fluorescence molecular imaging,” Annual Review of Biomedical Engineering, vol. 8, pp. 1-33, 2006. · doi:10.1146/annurev.bioeng.8.061505.095831
[4] J. K. Willmann, N. van Bruggen, L. M. Dinkelborg, and S. S. Gambhir, “Molecular imaging in drug development,” Nature Reviews Drug Discovery, vol. 7, no. 7, pp. 591-607, 2008. · doi:10.1038/nrd2290
[5] X. Montet, V. Ntziachristos, J. Grimm, and R. Weissleder, “Tomographic fluorescence mapping of tumor targets,” Cancer Research, vol. 65, no. 14, pp. 6330-6336, 2005. · doi:10.1158/0008-5472.CAN-05-0382
[6] H. Yi, D. Chen, X. Qu et al., “Multilevel, hybrid regularization method for reconstruction of fluorescent molecular tomography,” Applied Optics, vol. 51, no. 7, pp. 975-986, 2012. · doi:10.1364/AO.51.000975
[7] X. Song, D. Wang, N. Chen, J. Bai, and H. Wang, “Reconstruction for free-space fluorescence tomography using a novel hybrid adaptive finite element algorithm,” Optics Express, vol. 15, no. 26, pp. 18300-18317, 2007. · doi:10.1364/OE.15.018300
[8] A. Soubret, J. Ripoll, and V. Ntziachristos, “Accuracy of fluorescent tomography in the presence of heterogeneities: study of thenormalized born ratio,” IEEE Transactions on Medical Imaging, vol. 24, no. 10, pp. 1377-1386, 2005. · doi:10.1109/TMI.2005.857213
[9] D. Han, J. Tian, S. Zhu et al., “A fast reconstruction algorithm for fluorescence molecular tomography with sparsity regularization,” Optics Express, vol. 18, no. 8, pp. 8630-8646, 2010. · doi:10.1364/OE.18.008630
[10] Y. Lin, W. C. Barber, J. S. Iwanczyk, W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a combined tri-modality FT/DOT/XCT system,” Optics Express, vol. 18, no. 8, pp. 7835-7850, 2010.
[11] R. B. Schulz, A. Ale, A. Sarantopoulos et al., “Hybrid system for simultaneous fluorescence and X-ray computed tomography,” IEEE Transactions on Medical Imaging, vol. 29, no. 2, pp. 465-473, 2010. · doi:10.1109/TMI.2009.2035310
[12] F. Liu, X. Liu, D. Wang, B. Zhang, and J. Bai, “A Parallel excitation based fluorescence molecular tomography system for whole-body simultaneous imaging of small animals,” Annals of Biomedical Engineering, vol. 38, no. 11, pp. 3440-3448, 2010. · doi:10.1007/s10439-010-0093-4
[13] Y. Lin, W. C. Barber, J. S. Iwanczyk, W. W. Roeck, O. Nalcioglu, and G. Gulsen, “Quantitative fluorescence tomography using a trimodality system: in vivo validation,” Journal of Biomedical Optics, vol. 15, no. 4, Article ID 040503, 2010.
[14] S. R. Arridge, “Optical tomography in medical imaging,” Inverse Problems, vol. 15, no. 2, pp. R41-R49, 1999. · Zbl 0926.35155 · doi:10.1088/0266-5611/15/2/022
[15] M. Schweiger, S. R. Arridge, M. Hiraoka, and D. T. Delpy, “The finite element method for the propagation of light in scattering media: boundary and source conditions,” Medical Physics, vol. 22, no. 11, pp. 1779-1792, 1995. · doi:10.1118/1.597634
[16] S. R. Arridge, M. Schweiger, M. Hiraoka, and D. T. Delpy, “A finite element approach for modeling photon transport in tissue,” Medical Physics, vol. 20, no. 2, pp. 299-310, 1993. · doi:10.1118/1.597069
[17] X. Liu, D. Wang, F. Liu, and J. Bai, “Principal component analysis of dynamic fluorescence diffuse optical tomography images,” Optics Express, vol. 18, no. 6, pp. 6300-6314, 2010. · doi:10.1364/OE.18.006300
[18] M. A. Naser and M. S. Patterson, “Improved bioluminescence and fluorescence reconstruction algorithms using diffuse optical tomography, normalized data, and optimized selection of the permissible source region,” Biomedical Optics Express, vol. 2, no. 1, pp. 169-184, 2011. · doi:10.1364/BOE.2.000169
[19] A. Kak and M. Slaney, Computerized Tomographic Imaging, IEEE Press, New York, NY, USA, 1987. · Zbl 0721.92011
[20] D. Wang, X. Liu, Y. Chen, and J. Bai, “A novel finite-element-based algorithm for fluorescence molecular tomography of heterogeneous media,” IEEE Transactions on Information Technology in Biomedicine, vol. 13, no. 5, pp. 766-773, 2009. · Zbl 05740794 · doi:10.1109/TITB.2009.2015144
[21] B. Dogdas, D. Stout, A. F. Chatziioannou, and R. M. Leahy, “Digimouse: a 3D whole body mouse atlas from CT and cryosection data,” Physics in Medicine and Biology, vol. 52, no. 3, pp. 577-587, 2007. · doi:10.1088/0031-9155/52/3/003
[22] G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, “Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study,” Physics in Medicine and Biology, vol. 50, no. 17, pp. 4225-4241, 2005. · doi:10.1088/0031-9155/50/17/021
[23] X. He, J. Liang, X. Wang et al., “Sparse reconstruction for quantitative bioluminescence tomography based on the incomplete variables truncated conjugate gradient method,” Optics Express, vol. 18, no. 24, pp. 24825-24841, 2010. · doi:10.1364/OE.18.024825
[24] F. Gao, H. Zhao, Y. Tanikawa, and Y. Yamada, “A linear, featured-data scheme for image reconstruction in time-domain fluorescence molecular tomography,” Optics Express, vol. 14, no. 16, pp. 7109-7124, 2006. · doi:10.1364/OE.14.007109
[25] X. He, J. Liang, X. Qu, H. Huang, Y. Hou, and J. Tian, “Truncated total least squares method with a practical truncation parameter choice scheme for bioluminescence tomography inverse problem,” International Journal of Biomedical Imaging, vol. 2010, Article ID 291874, 11 pages, 2010. · doi:10.1155/2010/291874
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.