×

zbMATH — the first resource for mathematics

The 2D Boussinesq equations with fractional horizontal dissipation and thermal diffusion. (English. French summary) Zbl 1392.35240
Summary: This paper examines the global regularity problem on the two-dimensional (2D) incompressible Boussinesq equations with fractional horizontal dissipation and thermal diffusion. The goal is to establish the global existence and regularity for the Boussinesq equations with minimal dissipation and thermal diffusion. By working with this general 1D fractional Laplacian dissipation, we are no longer constrained to the standard partial dissipation and this study will help understand the issue on how much dissipation is necessary for the global regularity. Due to the nonlocality of these 1D fractional operators, some of the standard energy estimate techniques such as integration by parts no longer apply and new tools including several anisotropic embedding and interpolation inequalities involving fractional derivatives are derived. These tools allow us to obtain very sharp upper bounds for the nonlinearities.

MSC:
35Q35 PDEs in connection with fluid mechanics
35B65 Smoothness and regularity of solutions to PDEs
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
35B45 A priori estimates in context of PDEs
35R11 Fractional partial differential equations
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Adhikari, D.; Cao, C.; Shang, H.; Wu, J.; Xu, X.; Ye, Z., Global regularity results for the 2D Boussinesq equations with partial dissipation, J. Differ. Equ., 260, 1893-1917, (2016) · Zbl 1328.35161
[2] Adhikari, D.; Cao, C.; Wu, J., The 2D Boussinesq equations with vertical viscosity and vertical diffusivity, J. Differ. Equ., 249, 1078-1088, (2010) · Zbl 1193.35144
[3] Adhikari, D.; Cao, C.; Wu, J., Global regularity results for the 2D Boussinesq equations with vertical dissipation, J. Differ. Equ., 251, 1637-1655, (2011) · Zbl 1232.35111
[4] Bahouri, H.; Chemin, J.-Y.; Danchin, R., Fourier analysis and nonlinear partial differential equations, Grundlehren Math. Wiss., vol. 343, (2011), Springer-Verlag Berlin, Heidelberg · Zbl 1227.35004
[5] Cao, C.; Wu, J., Global regularity for the 2D anisotropic Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 208, 985-1004, (2013) · Zbl 1284.35140
[6] Chae, D., Global regularity for the 2D Boussinesq equations with partial viscosity terms, Adv. Math., 203, 497-513, (2006) · Zbl 1100.35084
[7] Chae, D.; Constantin, P.; Wu, J., An incompressible 2D didactic model with singularity and explicit solutions of the 2D Boussinesq equations, J. Math. Fluid Mech., 16, 473-480, (2014) · Zbl 1307.35213
[8] Chamorro, D.; Lemarié-Rieusset, P. G., Quasi-geostrophic equation, nonlinear Bernstein inequalities and α-stable processes, Rev. Mat. Iberoam., 28, 1109-1122, (2012) · Zbl 1256.35191
[9] Chemin, J.-Y., Perfect incompressible fluids, Oxf. Lect. Ser. Math. Appl., vol. 14, (1998)
[10] Choi, K.; Kiselev, A.; Yao, Y., Finite time blow up for a 1D model of 2D Boussinesq system, Commun. Math. Phys., 334, 1667-1679, (2015) · Zbl 1309.35072
[11] Choi, K.; Hou, T.; Kiselev, A.; Luo, G.; Sverak, V.; Yao, Y., On the finite-time blowup of a 1D model for the 3D axisymmetric Euler equations
[12] Constantin, P.; Vicol, V., Nonlinear maximum principles for dissipative linear nonlocal operators and applications, Geom. Funct. Anal., 22, 1289-1321, (2012) · Zbl 1256.35078
[13] Danchin, R.; Paicu, M., Global existence results for the anisotropic Boussinesq system in dimension two, Math. Models Methods Appl. Sci., 21, 421-457, (2011) · Zbl 1223.35249
[14] B. Dong, J. Wu, X. Xu, Z. Ye, Global regularity for the 2D micropolar equations with fractional dissipation, 2016, submitted for publication. · Zbl 1397.35204
[15] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for a Boussinesq-Navier-Stokes system with critical dissipation, J. Differ. Equ., 249, 2147-2174, (2010) · Zbl 1200.35228
[16] Hmidi, T.; Keraani, S.; Rousset, F., Global well-posedness for Euler-Boussinesq system with critical dissipation, Commun. Partial Differ. Equ., 36, 420-445, (2011) · Zbl 1284.76089
[17] Hmidi, T.; Zerguine, M., On the global well-posedness of the Euler-Boussinesq system with fractional dissipation, Physica D, 239, 1387-1401, (2010) · Zbl 1194.35329
[18] Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H., Blowup with vorticity control for a 2D model of the Boussinesq equations · Zbl 1387.35066
[19] Hou, T. Y.; Li, C., Global well-posedness of the viscous Boussinesq equations, Discrete Contin. Dyn. Syst., 12, 1-12, (2005) · Zbl 1274.76185
[20] Jiu, Q.; Miao, C.; Wu, J.; Zhang, Z., The 2D incompressible Boussinesq equations with general critical dissipation, SIAM J. Math. Anal., 46, 3426-3454, (2014) · Zbl 1319.35193
[21] Kenig, C.; Ponce, G.; Vega, L., Well-posedness and scattering results for the generalized Korteweg-de Vries equation via the contraction principle, Commun. Pure Appl. Math., 46, 527-620, (1993) · Zbl 0808.35128
[22] Kiselev, A.; Tan, C., Finite time blow up in the hyperbolic Boussinesq system · Zbl 1382.35054
[23] Larios, A.; Lunasin, E.; Titi, E. S., Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differ. Equ., 255, 2636-2654, (2013) · Zbl 1284.35343
[24] Li, J.; Titi, E. S., Global well-posedness of the 2D Boussinesq equations with vertical dissipation, Arch. Ration. Mech. Anal., 220, 983-1001, (2016) · Zbl 1336.35297
[25] Luo, G.; Hou, T., Potentially singular solutions of the 3D axisymmetric Euler equations, Proc. Natl. Acad. Sci. USA, 111, 12968-12973, (2014)
[26] Majda, A. J., Introduction to PDEs and waves for the atmosphere and Ocean, Courant Lect. Notes Math., vol. 9, (2003), AMS/CIMS · Zbl 1278.76004
[27] Miao, C.; Xue, L., On the global well-posedness of a class of Boussinesq-Navier-Stokes systems, NoDEA Nonlinear Differ. Equ. Appl., 18, 707-735, (2011) · Zbl 1235.76020
[28] Pedlosky, J., Geophysical fluid dynamics, (1987), Springer-Verlag New York · Zbl 0713.76005
[29] Sarria, A.; Wu, J., Blowup in stagnation-point form solutions of the inviscid 2d Boussinesq equations, J. Differ. Equ., 259, 3559-3576, (2015) · Zbl 1327.35044
[30] Stefanov, A.; Wu, J., A global regularity result for the 2D Boussinesq equations with critical dissipation, J. Anal. Math., (2018), in press
[31] Vallis, G., Atmospheric and oceanic fluid dynamics, (2006), Cambridge Univ. Press
[32] Wu, J.; Xu, X.; Xue, L.; Ye, Z., Regularity results for the 2D Boussinesq equations with critical and supercritical dissipation, Commun. Math. Sci., 14, 1963-1997, (2016) · Zbl 1358.35136
[33] Xu, X., Global regularity of solutions of 2D Boussinesq equations with fractional diffusion, Nonlinear Anal., 72, 677-681, (2010) · Zbl 1177.76024
[34] Yang, W.; Jiu, Q.; Wu, J., Global well-posedness for a class of 2D Boussinesq systems with fractional dissipation, J. Differ. Equ., 257, 4188-4213, (2014) · Zbl 1300.35108
[35] Ye, Z., Global smooth solution to the 2D Boussinesq equations with fractional dissipation, Math. Methods Appl. Sci., 40, 4595-4612, (2017) · Zbl 1369.35072
[36] Ye, Z.; Xu, X., Global well-posedness of the 2D Boussinesq equations with fractional Laplacian dissipation, J. Differ. Equ., 260, 6716-6744, (2016) · Zbl 1341.35135
[37] D. Zhou, Z. Li, H. Shang, J. Wu, B. Yuan, J. Zhao, Global well-posedness for the 2D fractional Boussinesq equations in the subcritical case, Pacific J. Math., accepted for publication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.