zbMATH — the first resource for mathematics

Finite difference approximations for the fractional advection-diffusion equation. (English) Zbl 1234.65034
Summary: Fractional order diffusion equations are viewed as generalizations of classical diffusion equations, treating super-diffusive flow processes. In this Letter, in order to solve the two-sided fractional advection-diffusion equation, the fractional Crank-Nicholson method (FCN) is given, which is based on shifted Grünwald-Letnikov formula. It is shown that this method is unconditionally stable, consistent and convergent. The accuracy with respect to the time step is of order \((\Delta t)^2\). A numerical example is presented to confirm the conclusions.

65M06 Finite difference methods for initial value and initial-boundary value problems involving PDEs
60G22 Fractional processes, including fractional Brownian motion
60J60 Diffusion processes
35K57 Reaction-diffusion equations
35R11 Fractional partial differential equations
Full Text: DOI
[1] Hilfer, R., Applications of fractional calculus in physics, (2000), World Scientific Singapore · Zbl 0998.26002
[2] Jafari, H.; Momani, S., Phys. lett. A, 370, 388, (2007)
[3] Chaves, A., Phys. lett. A, 239, 13, (1998)
[4] Meerschaert, M.M.; Benson, D.; Scheffler, H.P.; Baeumer, B., Phys. rev. E, 65, 1103, (2002)
[5] Liu, F.; Anh, V.; Turner, I., J. comput. appl. math., 166, 209, (2004)
[6] Meerschaert, M.M.; Tadjeran, C., Appl. numer. math., 56, 80, (2006)
[7] Benson, D.A.; Wheatcraft, S.W.; Meerschaert, M.M., Water resour. res., 36, 6, 1413, (2000)
[8] Podlubny, I., Fractional differential equations, (1999), Academic Press New York · Zbl 0918.34010
[9] Mainardi, F., Chaos solitons fractals, 7, 1461, (1996)
[10] Henry, B.I.; Wearne, S.L., Physica A, 276, 448, (2000)
[11] Odibat, Z.M., Phys. lett. A, 372, 1219, (2008)
[12] Momani, S.; Odibat, Z., Phys. lett. A, 365, 345, (2007)
[13] Langlands, T.; Henry, B., J. comput. phys., 205, 2, 719, (2005)
[14] Morton, K.W.; Mayers, D.F., Numerical solution of partial differential equations, (1994), Cambridge University Press Cambridge · Zbl 0811.65063
[15] Yuste, S.B., J. comput. phys., 216, 264, (2006)
[16] Odibat, Z.M., Phys. lett. A, 370, 295, (2007)
[17] Samko, S.; Kilbas, A.; Marichev, O., Fractional integrals and derivatives: theory and applications, (1993), Gordon and Breach London · Zbl 0818.26003
[18] Lubich, C., SIAM J. math. anal., 17, 704, (1986)
[19] Tadjeran, C.; Meerschaert, M.M., J. comput. phys., 220, 813, (2007)
[20] Isaacson, E.; Keller, H.B., Analysis of numerical methods, (1966), Wiley New York · Zbl 0168.13101
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.