×

zbMATH — the first resource for mathematics

A combined lattice BGK/level set method for immiscible two-phase flows. (English) Zbl 1189.76399
Summary: We present a lattice Boltzmann method (LBM) for simulating immiscible multi-phase flows which is based on a coupling of LBM with the level set method. The computation of immiscible flows using the LBM with BGK collision operator is done separately in each of the fluid domains and coupled at the interface by an appropriate boundary condition. In this way we preserve sharp interfaces between different fluid phases. We apply a new interface condition that represents the fluid mechanical jump conditions at the interface in the kinetic LBM framework. The level set method is applied to compute the evolution of the interface between fluids. Numerical results demonstrate the applicability of the method even in the presence of large viscosity and density ratios.

MSC:
76M28 Particle methods and lattice-gas methods
Software:
FELSOS
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Chen, S.; Doolen, G.D., Lattice Boltzmann method for fluid flows, Ann. rev. fluid mech., 30, 329-364, (1998) · Zbl 1398.76180
[2] Succi, Sauro, The lattice Boltzmann equation for fluid dynamics and beyond, (2001), Clarendon Press Oxford · Zbl 0990.76001
[3] d’Humières, D.; Shizgal, B.D.; Weaver, D.P., Generalized lattice-Boltzmann equations, Rarefied gas dynamics: theory and simulations, progress in astronautics and aeronautics, AIAA, 159, 450-458, (1992)
[4] D’humières, D.; Ginzburg, I.; Krafczyk, M.; Lallemand, P.; Luo, L.-S., Multiple-relaxation-time lattice Boltzmann models in three dimensions, Phil. trans. R. soc. A, 360, 437-451, (2002) · Zbl 1001.76081
[5] Rothman, D.H.; Keller, J.M., Immiscible cellular-automaton fluids, J. stat. phys., 53, 3, 119-1127, (1988) · Zbl 1084.82504
[6] Gunstensen, A.K.; Rothman, D.H.; Zaleski, S.; Zanetti, G., Lattice Boltzmann model of immiscible fluids, Phys. rev. A, 43, 8, 4320-4327, (1991)
[7] Geller, S.; Krafczyk, M.; Tölke, J.; Turek, S.; Hron, J., Benchmark computations based on lattice-Boltzmann finite element and finite volume methods for laminar flow, Comput. & fluids, 35, 8-9, 888-897, (2006) · Zbl 1177.76313
[8] Swift, M.R.; Osborn, W.R.; Yeomans, J.M., Lattice Boltzmann simulation of nonideal fluids, Phys. rev. lett., 75, 830-833, (1995)
[9] Inamuro, T.; Ogata, T.; Tajima, S.; Konishi, N., A lattice Boltzmann method for incompressible two-phase flows with large density differences, J. comput. phys., 198, 628-644, (2004) · Zbl 1116.76415
[10] Shan, X.; Chen, H., Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. rev. E, 47, 3, 1815, (1993)
[11] Swift, M.R.; Orlandini, E.; Osborn, W.R.; Yeomans, J.M., Lattice Boltzmann simulations of liquid-gas and binary fluid systems, Phys. rev. E, 54, 5, 5041-5052, (1996)
[12] Shan, X.; Chen, H., Simulation of nonideal gases and liquid-gas phase transition by the lattice Boltzmann equation, Phys. rev. E, 49, 4, 2941, (1994)
[13] Lallemand, P.; Luo, L.S.; Peng, Y., A lattice Boltzmann front-tracking method for interface dynamics with surface tension in two dimensions, J. comput. phys., 226, 2, 1367-1384, (2007) · Zbl 1173.76394
[14] Bouzidi, M.; Firdaouss, M.; Lallemand, P., Momentum transfer of a Boltzmann-lattice fluid with boundaries, Phys. fluids, 13, 11, 3452-3458, (2001) · Zbl 1184.76068
[15] Guo, Z.; Zheng, C.; Shi, B., An extrapolation method for boundary conditions in lattice Boltzmann method, Phys. fluids, 14, 6, 2007-2010, (2002) · Zbl 1185.76156
[16] Junk, M.; Yang, Z., A one-point boundary condition for the lattice Boltzmann method, Phy. rev. E, 72, 066701, (2005)
[17] Junk, M.; Yang, Z., Outflow boundary conditions for the lattice Boltzmann method, Prog. comput. fluid dyn., 8, 38-48, (2008) · Zbl 1139.76045
[18] Zou, Q.; He, X., On pressure and velocity boundary conditions for the lattice Boltzmann BGK model, Phys. fluids, 9, 6, 1591-1597, (1997) · Zbl 1185.76873
[19] A. Caiazzo, Asymptotic Analysis of lattice Boltzmann method for Fluid-Structure interaction problems, Ph.D. Thesis, Kaiserslautern (Germany) and Pisa (Italy), 2007, http://kluedo.ub.uni-kl.de/volltexte/2007/2079
[20] Caiazzo, A., Analysis of lattice Boltzmann nodes initialisation in moving boundary problems, Prog. comput. fluid dyn., 8, 3-10, (2008) · Zbl 1187.76723
[21] Adalsteinsson, D.; Sethian, J.A., The fast construction of extension velocities in level set methods, J. comput. phys., 148, 2, 2-22, (1999) · Zbl 0919.65074
[22] Adalsteinsson, D.; Sethian, J.A., A fast level set method for propagating interfaces, J. comput. phys., 118, 2, 269-277, (1995) · Zbl 0823.65137
[23] Osher, S.; Sethian, J., Fronts propagating with curvature-dependent speed: algorithms based on hamilton – jacobi formulations, J. comput. phys., 79, 12-49, (1988) · Zbl 0659.65132
[24] Osher, S.; Fedkiw, R., Level set methods and dynamic implicit surfaces, (2003), Springer New York · Zbl 1026.76001
[25] A.K. Vaikuntam, A. Wiegmann, Accurate estimation of surface parameters from the level set functions by a least squares approach, J. Scientific Comput., 2007, (submitted for publication)
[26] Smolianski, A., Finite-element/level-set/operator-splitting (FELSOS) approach for computing two-fluid unsteady flows with free moving interfaces, Internat. J. numer. methods fluids, 48, 3, 231-269, (2005) · Zbl 1068.76054
[27] Sussmann, M., A second order coupled level set and volume of fluid for computing growth and collapse of vapour bubbles, J. comput. phys., 187, 110-136, (2003)
[28] Thömmes, G.; Becker, J.; Junk, M.; Vaikuntam, A.K.; Kehrwald, D.; Klar, A.; Steiner, K.; Wiegmann, A., A lattice Boltzmann method for immiscible multiphase flow simulations using the level set method, J. comput. phys., 228, 1139-1156, (2009) · Zbl 1169.76050
[29] Junk, M.; Klar, A.; Luo, L.-S., Asymptotic analysis of the lattice Boltzmann equation, J. comput. phys., 210, 2, 676-704, (2005) · Zbl 1079.82013
[30] Junk, M.; Yang, Z., Asymptotic analysis of lattice Boltzmann boundary conditions, J. stat. phys., 121, 3-35, (2005) · Zbl 1107.82049
[31] Z. Yang, Analysis of lattice Boltzmann boundary conditions, Ph.D. Thesis, Konstanz, Germany, 2007
[32] Casademunt, J., Viscous fingering as a paradigm of interfacial pattern formation: recent results and new challenges, Chaos, 14, 3, 809-824, (1997) · Zbl 1080.76028
[33] Reinelt, D.A.; Saffman, P.G., The penetration of a finger into a viscous fluid in channel and tube, SIAM J. sci. stat. comput., 6, 3, 542-561, (1985) · Zbl 0578.76042
[34] Saffman, P.G.; Taylor, G.I., The penetration of a fluid into a porous medium or hele – shaw cell containing a more viscous liquid, Proc. roy. soc. A, 245, 312-329, (1958) · Zbl 0086.41603
[35] Clift, R.; Grace, J.R.; Weber, M.E., Bubbles drops and particles, (1978), Academic Press
[36] Ginzburg, I., Lattice Boltzmann modelling with discontinuous collision components. hydrodynamic and advection – diffusion equations, J. stat. phys., 126, 157-203, (2007) · Zbl 1198.82039
[37] Qian, Y.H.; D’humières, D.; Lallemand, P., Lattice BGK models for the Navier Stokes equation, Europhys. lett., 17, 479-484, (1992) · Zbl 1116.76419
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.