×

Extension of moment projection method to the fragmentation process. (English) Zbl 1375.82102

Summary: The method of moments is a simple but efficient method of solving the population balance equation which describes particle dynamics. Recently, the moment projection method (MPM) was proposed and validated for particle inception, coagulation, growth and, more importantly, shrinkage; here, the method is extended to include the fragmentation process. The performance of MPM is tested for 13 different test cases for different fragmentation kernels, fragment distribution functions and initial conditions. Comparisons are made with the quadrature method of moments (QMOM), hybrid method of moments (HMOM) and a high-precision stochastic solution calculated using the established direct simulation algorithm (DSA) and advantages of MPM are drawn.

MSC:

82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Kumar, J.; Warnecke, G.; Peglow, M.; Heinrich, S., Comparison of numerical methods for solving population balance equations incorporating aggregation and breakage, Powder Technol., 189, 2, 218-229 (2009)
[2] Diemer, R. B.; Olson, J. H., A moment methodology for coagulation and breakage problems: part 2—moment models and distribution reconstruction, Chem. Eng. Sci., 57, 12, 2211-2228 (2002)
[3] Sundback, C. A.; Beér, J. M.; Sarofim, A. F., Fragmentation behavior of single coal particles in a fluidized bed, Symp. (Int.) Combust., 20, 1, 1495-1503 (1984)
[4] Harris, S. J.; Maricq, M. M., The role of fragmentation in defining the signature size distribution of diesel soot, J. Aerosol Sci., 33, 6, 935-942 (2002)
[5] Wu, S.; Yapp, E. K.Y.; Akroyd, J.; Mosbach, S.; Xu, R.; Yang, W.; Kraft, M., A moment projection method for population balance dynamics with a shrinkage term, J. Comput. Phys., 330, 960-980 (2017)
[6] Mueller, M. E.; Blanquart, G.; Pitsch, H., Hybrid method of moments for modeling soot formation and growth, Combust. Flame, 156, 6, 1143-1155 (2009)
[7] Mueller, M. E.; Blanquart, G.; Pitsch, H., Modeling the oxidation-induced fragmentation of soot aggregates in laminar flames, Proc. Combust. Inst., 33, 1, 667-674 (2011)
[8] Peterson, T. W., Similarity solutions for the population balance equation describing particle fragmentation, Aerosol Sci. Technol., 5, 1, 93-101 (1986)
[9] Bruns, M. C.; Ezekoye, O. A., Development of a hybrid sectional quadrature-based moment method for solving population balance equations, J. Aerosol Sci., 54, 88-102 (2012)
[10] Hulburt, H. M.; Katz, S., Some problems in particle technology: a statistical mechanical formulation, Chem. Eng. Sci., 19, 8, 555-574 (1964)
[11] Grosschmidt, D.; Bockhorn, H.; Goodson, M.; Kraft, M., Two approaches to the simulation of silica particle synthesis, Proc. Combust. Inst., 29, 1, 1039-1046 (2002)
[12] Madadi-Kandjani, E.; Passalacqua, A., An extended quadrature-based moment method with log-normal kernel density functions, Chem. Eng. Sci., 131, 323-339 (2015)
[13] Akroyd, J.; Smith, A. J.; McGlashan, L. R.; Kraft, M., Comparison of the stochastic fields method and DQMoM-IEM as turbulent reaction closures, Chem. Eng. Sci., 65, 20, 5429-5441 (2010)
[14] Barrett, J. C.; Webb, N. A., A comparison of some approximate methods for solving the aerosol general dynamic equation, J. Aerosol Sci., 29, 1-2, 31-39 (1998)
[15] Falola, A.; Borissova, A.; Wang, X. Z., Extended method of moment for general population balance models including size dependent growth rate, aggregation and breakage kernels, Comput. Chem. Eng., 56, 1-11 (2013)
[16] Madras, G.; McCoy, B. J., Reversible crystal growth-dissolution and aggregation-breakage: numerical and moment solutions for population balance equations, Powder Technol., 143-144, 297-307 (2004)
[17] McGraw, R., Description of aerosol dynamics by the quadrature method of moments, Aerosol Sci. Technol., 27, 2, 255-265 (1997)
[18] Marchisio, D. L.; Pikturna, J. T.; Fox, R. O.; Dennis Vigil, R.; Barresi, A. A., Quadrature method of moments for population-balance equations, AIChE J., 49, 5, 1266-1276 (2003)
[19] Marchisio, D. L.; Dennis Vigil, R.; Fox, R. O., Implementation of the quadrature method of moments in CFD codes for aggregation-breakage problems, Chem. Eng. Sci., 58, 15, 3337-3351 (2003)
[20] Marchisio, D. L.; Dennis Vigil, R.; Fox, R. O., Quadrature method of moments for aggregation-breakage processes, J. Colloid Interface Sci., 258, 2, 322-334 (2003)
[21] Marchisio, D. L.; Fox, R. O., Solution of population balance equations using the direct quadrature method of moments, J. Aerosol Sci., 36, 1, 43-73 (2005)
[22] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization—I. A fixed pivot technique, Chem. Eng. Sci., 51, 8, 1311-1332 (1996)
[23] Kumar, S.; Ramkrishna, D., On the solution of population balance equations by discretization—II. A moving pivot technique, Chem. Eng. Sci., 51, 8, 1333-1342 (1996)
[24] Gelbard, F.; Seinfeld, J. H., Simulation of multicomponent aerosol dynamics, J. Colloid Interface Sci., 78, 2, 485-501 (1980)
[25] Hounslow, M. J.; Ryall, R. L.; Marshall, V. R., A discretized population balance for nucleation, growth, and aggregation, AIChE J., 34, 11, 1821-1832 (1988)
[26] Hounslow, M. J., A discretized population balance for continuous systems at steady state, AIChE J., 36, 1, 106-116 (1990)
[27] Alopaeus, V.; Laakkonen, M.; Aittamaa, J., Solution of population balances with breakage and agglomeration by high-order moment-conserving method of classes, Chem. Eng. Sci., 61, 20, 6732-6752 (2006)
[28] Smooke, M. D.; McEnally, C. S.; Pfefferle, L. D.; Hall, R. J.; Colket, M. B., Computational and experimental study of soot formation in a coflow, laminar diffusion flame, Combust. Flame, 117, 1-2, 117-139 (1999)
[29] Eaves, N. A.; Dworkin, S. B.; Thomson, M. J., The importance of reversibility in modeling soot nucleation and condensation processes, Proc. Combust. Inst., 35, 2, 1787-1794 (2015)
[30] Lee, K. F.; Patterson, R. I.A.; Wagner, W.; Kraft, M., Stochastic weighted particle methods for population balance equations with coagulation, fragmentation and spatial inhomogeneity, J. Comput. Phys., 303, 1-18 (2015) · Zbl 1349.65043
[31] Kraft, M.; Wagner, W., Numerical study of a stochastic particle method for homogeneous gas-phase reactions, Comput. Math. Appl., 45, 1-3, 329-349 (2003) · Zbl 1151.80322
[32] Patterson, R. I.A.; Wagner, W.; Kraft, M., Stochastic weighted particle methods for population balance equations, J. Comput. Phys., 230, 19, 7456-7472 (2011) · Zbl 1252.65021
[33] Eibeck, A.; Wagner, W., Stochastic interacting particle systems and nonlinear kinetic equations, Ann. Appl. Probab., 13, 3, 845-889 (2003) · Zbl 1045.60104
[34] Braumann, A.; Kraft, M.; Wagner, W., Numerical study of a stochastic particle algorithm solving a multidimensional population balance model for high shear granulation, J. Comput. Phys., 229, 20, 7672-7691 (2010) · Zbl 1425.74124
[35] Yapp, E. K.Y.; Patterson, R. I.A.; Akroyd, J.; Mosbach, S.; Adkins, E. M.; Miller, J. H.; Kraft, M., Numerical simulation and parametric sensitivity study of optical band gap in a laminar co-flow ethylene diffusion flame, Combust. Flame, 167, 320-334 (2016)
[36] Balthasar, M.; Kraft, M., A stochastic approach to calculate the particle size distribution function of soot particles in laminar premixed flames, Combust. Flame, 133, 3, 289-298 (2003)
[37] Frenklach, M., Method of moments with interpolative closure, Chem. Eng. Sci., 57, 12, 2229-2239 (2002)
[38] Strumendo, M.; Arastoopour, H., Solution of PBE by MOM in finite size domains, Chem. Eng. Sci., 63, 10, 2624-2640 (2008)
[39] Yuan, C.; Laurent, F.; Fox, R., An extended quadrature method of moments for population balance equations, J. Aerosol Sci., 51, 1-23 (2012)
[40] Blumstein, C.; Wheeler, J. C., Modified-moments method: applications to harmonic solids, Phys. Rev. B, 8, 1764-1776 (1973)
[41] Golub, G. H., Some modified matrix eigenvalue problems, SIAM Rev., 15, 318-334 (1973) · Zbl 0254.65027
[42] Press, G. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P., The Art of Scientific Computing (2007), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1132.65001
[43] Buffo, A.; Vanni, M.; Marchisio, D. L., On the implementation of moment transport equations in OpenFOAM: boundedness and realizability, Int. J. Multiph. Flow, 85, 223-235 (2016)
[44] Wright, D. L., Numerical advection of moments of the particle size distribution in Eulerian models, J. Aerosol Sci., 38, 352-369 (2007)
[45] Vikas, V.; Wang, Z. J.; Passalacqua, A.; Fox, R. O., Realizable high-order finite-volume schemes for quadrature-based moment methods, J. Comput. Phys., 230, 5328-5352 (2011) · Zbl 1419.76465
[46] Kah, D.; Laurent, F.; Massot, M.; Jay, S., A high order moment method simulating evaporation and advection of a polydisperse liquid spray, J. Comput. Phys., 231, 394-422 (2012) · Zbl 1426.76383
[47] Ziff, R. M.; McGrady, E. D., Kinetics of polymer degradation, Macromolecules, 19, 10, 2513-2519 (1986)
[48] McGrady, E. D.; Ziff, R. M., “Shattering” transition in fragmentation, Phys. Rev. Lett., 58, 892-895 (1987)
[49] Ziff, R. M.; McGrady, E. D., The kinetics of cluster fragmentation and depolymerisation, J. Phys. A, Math. Gen., 18, 15, 3027-3037 (1985)
[50] Ziff, R. M., New solutions to the fragmentation equation, J. Phys. A, Math. Gen., 24, 12, 2821-2828 (1991)
[51] Kostoglou, M.; Karabelas, A. J., Optimal low order methods of moments for solving the fragmentation equation, Powder Technol., 143-144, 280-290 (2004)
[52] Kostoglou, M.; Karabelas, A. J., On the self-similar solution of fragmentation equation: numerical evaluation with implications for the inverse problem, J. Colloid Interface Sci., 284, 2, 571-581 (2005)
[53] Gordon, R. G., Error bounds in equilibrium statistical mechanics, J. Math. Phys., 9, 655-663 (1968) · Zbl 0182.30002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.