×

Stability of symmetric Runge-Kutta methods for neutral delay integro-differential equations. (English) Zbl 1359.65312

Summary: The aim of this paper is to analyze the delay-dependent stability of symmetric Runge-Kutta methods, including the Gauss methods and the Lobatto IIIA, IIIB, and IIIS methods, for the linear neutral delay integro-differential equations. By means of the root locus technique, the structure of the root locus curve is given and the numerical stability region of symmetric Runge-Kutta methods is obtained. It is proved that, under some conditions, the analytical stability region is contained in the numerical stability region. Finally, some numerical examples are presented to illustrate the theoretical results.

MSC:

65R20 Numerical methods for integral equations
45A05 Linear integral equations
45J05 Integro-ordinary differential equations
45M10 Stability theory for integral equations

Software:

RODAS
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] A. Bellen and M. Zennaro, {\it Numerical Methods for Delay Differential Equations}, Oxford University Press, Oxford, UK, 2003. · Zbl 1038.65058
[2] H. Brunner, E. Hairer, and S. P. Nørsett, {\it Runge-Kutta theory for Volterra integral equations of the second kind}, Math. Comp., 39 (1982), pp. 147-163, . · Zbl 0496.65066
[3] R. P. K. Chan, {\it On symmetric Runge-Kutta methods of high order}, Computing, 45 (1990), pp. 301-309, . · Zbl 0724.65074
[4] O. Diekmann, S. A. van Gils, S. M. Verduyn Lunel, and H.-O. Walther, {\it Delay Equations: Functional-, Complex-, and Nonlinear Analysis}, Springer-Verlag, New York, 1995. · Zbl 0826.34002
[5] N. Guglielmi, {\it On the asymptotic stability properties of Runge-Kutta methods for delay differential equations}, Numer. Math., 77 (1997), pp. 467-485, . · Zbl 0885.65092
[6] N. Guglielmi, {\it Delay dependent stability regions of \(θ\)-methods for delay differential equations}, IMA J. Numer. Anal., 18 (1998), pp. 399-418, . · Zbl 0909.65050
[7] N. Guglielmi, {\it Asymptotic stability barriers for natural Runge-Kutta processes for delay equations}, SIAM J. Numer. Anal., 39 (2001), pp. 763-783, . · Zbl 1002.65085
[8] N. Guglielmi and E. Hairer, {\it Order stars and stability for delay differential equations}, Numer. Math., 83 (1999), pp. 371-383, . · Zbl 0937.65079
[9] N. Guglielmi and E. Hairer, {\it Geometric proofs of numerical stability for delay equations}, IMA J. Numer. Anal., 21 (2001), pp. 439-450, . · Zbl 0976.65077
[10] E. Hairer and G. Wanner, {\it Algebraically stable and implementable Runge-Kutta methods of high order}, SIAM J. Numer. Anal., 18 (1981), pp. 1098-1108, . · Zbl 0533.65041
[11] E. Hairer and G. Wanner, {\it Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems}, Springer-Verlag, Berlin, 1991. · Zbl 0729.65051
[12] C. Huang, {\it Delay-dependent stability of high order Runge-Kutta methods}, Numer. Math., 111 (2009), pp. 377-387, . · Zbl 1167.65045
[13] C. Huang, Y. Hu, and H. Tian, {\it Delay-dependent stability analysis of multistep methods for delay differential equations}, Acta Math. Appl. Sin. Engl. Ser., 25 (2009), pp. 607-616, . · Zbl 1190.65115
[14] C. Huang and S. Vandewalle, {\it An analysis of delay-dependent stability for ordinary and partial differential equations with fixed and distributed delays}, SIAM J. Sci. Comput., 25 (2004), pp. 1608-1632, . · Zbl 1064.65078
[15] C. Huang and S. Vandewalle, {\it Stability of Runge-Kutta-Pouzet methods for Volterra integro-differential equations with delays}, Front. Math. China, 4 (2009), pp. 63-87, . · Zbl 1396.65112
[16] T. Koto, {\it Stability of Runge-Kutta methods for delay integro-differential equations}, J. Comput. Appl. Math., 145 (2002), pp. 483-492, . · Zbl 1002.65148
[17] W. Li, S. Wu, and S. Gan, {\it Delay-dependent stability of symmetric schemes in boundary value methods for DDEs}, Appl. Math. Comput., 215 (2009), pp. 2445-2455, . · Zbl 1208.65097
[18] H. Liu and G. Sun, {\it Implicit Runge-Kutta methods based on Lobatto quadrature formula}, Int. J. Comput. Math., 82 (2005), pp. 77-88, . · Zbl 1067.65069
[19] Ch. Lubich, {\it Runge-Kutta theory for Volterra integrodifferential equations}, Numer. Math., 40 (1982), pp. 119-135, . · Zbl 0491.65064
[20] S. Maset, {\it Stability of Runge-Kutta methods for linear delay differential equations}, Numer. Math., 87 (2000), pp. 355-371, . · Zbl 0979.65069
[21] S. Maset, {\it Instability of Runge-Kutta methods when applied to linear systems of delay differential equations}, Numer. Math., 90 (2002), pp. 555-562, . · Zbl 1008.65052
[22] S. P. Nørsett and G. Wanner, {\it Perturbed collocation and Runge-Kutta methods}, Numer. Math., 38 (1981), pp. 193-208, . · Zbl 0471.65045
[23] H. J. Stetter, {\it Analysis of Discretization Methods for Ordinary Differential Equations}, Springer-Verlag, New York, 1973. · Zbl 0276.65001
[24] S. Wu and S. Gan, {\it Analytical and numerical stability of neutral delay integro-differential equations and neutral delay partial differential equations}, Comput. Math. Appl., 55 (2008), pp. 2426-2443, . · Zbl 1142.45306
[25] Y. Xu and J. Zhao, {\it Analysis of delay-dependent stability of linear \(θ\)-methods for linear delay-integro-differential equations}, IMA J. Appl. Math., 74 (2009), pp. 851-869, . · Zbl 1193.65233
[26] J. Zhao, Y. Fan, and Y. Xu, {\it Delay-dependent stability analysis of symmetric boundary value methods for linear delay integro-differential equations}, Numer. Algorithms, 65 (2014), pp. 125-151, . · Zbl 1286.65189
[27] J. Zhao, Y. Fan, and Y. Xu, {\it An analysis of delay-dependent stability of symmetric boundary value methods for the linear neutral delay integro-differential equations with four parameters}, Appl. Math. Model., 39 (2015), pp. 2453-2469, . · Zbl 1443.65092
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.