zbMATH — the first resource for mathematics

A challenging dam structural analysis: large-scale implicit thermo-mechanical coupled contact simulation on Tianhe. II. (English) Zbl 07024100
Summary: Due to huge bulk volume and extremely complex geometrical and geological features, it is forbiddingly difficult to perform a dam structural analysis with even moderate geometry fidelity in engineering practices. We present a high resolution of engineering structural analysis of the first ultra-high concrete-faced rockfill dam in China. Mesh resolution is taken to be 20 cm along slab thickness for the bulk volume of 20M \(\mathrm{m}^{3}\) of the whole dam. The engineering problem is solved by considering nonlinear behaviors such as joints’ contact nonlinearity, creep deformation, and strong thermo-mechanical coupling, as well as blended continuous-discontinuous approximation, on a mesh model of 1.1 billion dofs using 16K CPU cores of Tianhe-II. The problem to be solved is a challenging non-positive definite, non-symmetric and ill-conditioned matrix problem. The simulation confirms in the first time that the sunlight temperature effect can contribute up to a contact stress increment of maximum 10.9 MPa and explains frequent extrusion damage observed for the dam. As model tests are difficult to perform for high dams, with this first success, we envision that extreme-scale simulation would pose broad impact on the safety evaluation of high dams in future.
74 Mechanics of deformable solids
Full Text: DOI
[1] Chen, G.; Jin, D.; Mao, J.; etal., Seismic damage and behavior analysis of earth dams during the 2008 Wenchuan earthquake, China, Eng Geol, 180, 99-129, (2014)
[2] Luo, L.; Chen, Y.; Zhong, HT, Application of geomembrane in temporary treatment of extrusion damage of dam face slab, Dam Saf, 2, 48-51, (2013)
[3] Xu, ZP; Guo, C., Research on the concrete face slab rupture of high CFRD, Water Power, 33, 81-84, (2007)
[4] Hao, JT; Du, ZK, Precaution measures for the spalling failure of the slab joint concrete in high CFRDs, Water Power, 34, 41-44, (2008)
[5] Cao, KM; Xu, JJ, Discussions on critical deflection of face slab and its design improvement for super-high CFRD, Water Power, 34, 98-102, (2009)
[6] Ma, HQ; Cao, KM, Key technology of supper-high CFRD, Eng Sci, 9, 4-10, (2007)
[7] Li, NH; Yang, ZY, Technical advances in concrete face rockfill dams in China, Chin J Geotech Eng, 34, 1361-1368, (2012)
[8] Cao, KM; Zhang, ZL, Performance of the Tianshengqiao 1 CFRD, Int J Hydropower Dams, 8, 78-83, (2001)
[9] Zhou, MZ; Zhang, BY; Zhang, ZL; etal., Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams, Chin J Geotech Eng, 37, 1426-1432, (2015)
[10] Cao KM, Wang YS, Xu JJ et al (2008) Concrete face rockfill dam. China Water Power Press, Beijing, p 147 (in Chinese)
[11] International Commission on Large Dams (ICOLD) (2013) Benchmark workshops on dam safety, Graz, Austria. http://www.icold-cigb.net. Accessed 20 Dec 2017
[12] Popp, A.; Seitz, A.; Gee, MW; etal., Improved robustness and consistency of 3D contact algorithms based on a dual mortar approach, Comput Methods Appl Mech Eng, 264, 67-80, (2013) · Zbl 1286.74106
[13] Hughes, TJR; Taylor, RL; Sackman, JL; etal., A finite element method for a class of contact impact problems, Comput Methods Appl Mech Eng, 8, 249-276, (1976) · Zbl 0367.73075
[14] Hallquist, JO; Goudreau, GL; Benson, DJ, Sliding interfaces with contact-impact in large-scale Lagrangian computations, Comput Methods Appl Mech Eng, 51, 107-137, (1985) · Zbl 0567.73120
[15] Taylor, RL; Papadopoulos, P.; Wriggers, P. (ed.); Wagner, W. (ed.), On a patch test for contact problems in two dimensions, 690-702, (1991), Berlin
[16] Crisfield, MA, Re-visiting the contact patch test, Int J Numer Meth Eng, 48, 435-449, (2000) · Zbl 0969.74062
[17] El-Abbasi, N.; Bathe, KJ, Stability and patch test performance of contact discretizations and a new solution algorithm, Comput Struct, 79, 1473-1486, (2001)
[18] Tan, D., Mesh matching and contact patch test, Comput Mech, 31, 135-152, (2003) · Zbl 1038.74653
[19] Chen, X.; Hisada, T., Development of finite element contact analysis algorithm passing patch test, Nihon Kikai Gakkai Ronbunshu A Hen (Trans Jpn Soc Mech Eng Part A), 72, 39-46, (2006)
[20] Kim, JH; Lim, JH; Lee, JH; etal., A new computational approach to contact mechanics using variable-node finite elements, Int J Numer Meth Eng, 73, 1966-1988, (2008) · Zbl 1195.74180
[21] Kang, YS; Kim, J.; Sohn, D.; etal., A new three-dimensional variable-node finite element and its application for fluid-solid interaction problems, Comput Methods Appl Mech Eng, 281, 81-105, (2014) · Zbl 1423.74896
[22] Zavarise, G.; Lorenzis, LD, A modified node-to-segment algorithm passing the contact patch test, Int J Numer Meth Eng, 79, 379-416, (2010) · Zbl 1171.74455
[23] Zhou, MZ; Zhang, BY; Peng, C.; etal., Three-dimensional numerical analysis of concrete-faced rockfill dam using dual-mortar finite element method with mixed tangential contact constraints, Int J Numer Anal Meth Geomech, 40, 2100-2122, (2016)
[24] Hüeber, S.; Wohlmuth, BI, Thermo-mechanical contact problems on non-matching meshes, Comput Methods Appl Mech Eng, 198, 1338-1350, (2009) · Zbl 1227.74072
[25] Goodman, RE; Taylor, RL; Brekke, TL, A model for the mechanics of jointed rock, J Soil Mech Found, 94, 637-660, (1968)
[26] Desai, CS; Zaman, MM; Lightner, JG; etal., Thin-layer element for interfaces and joints, Int J Numer Anal Meth Geomech, 8, 19-43, (1984)
[27] Zhang, BY; Wang, JG; Shi, R., Time-dependent deformation in high concrete-faced rockfill dam and separation between concrete face slab and cushion layer, Comput Geotech, 31, 559-573, (2004)
[28] Bathe, KJ; Chaudhary, A., A solution method for planar and axisymmetric contact problems, Int J Numer Meth Eng, 21, 65-88, (1985) · Zbl 0551.73099
[29] Wriggers, P.; Simo, JC, A note on tangent stiffness for fully nonlinear contact problems, Commun Appl Numer Methods, 1, 199-203, (1985) · Zbl 0582.73110
[30] Areias, PMA; Sá, JMACD; António, CAC, Algorithms for the analysis of 3D finite strain contact problems, Int J Numer Meth Eng, 61, 1107-1151, (2004) · Zbl 1075.74632
[31] Sabetamal, H.; Nazem, M.; Sloan, SW; etal., Frictionless contact formulation for dynamic analysis of nonlinear saturated porous media based on the mortar method, Int J Numer Anal Methods Geomech, 40, 25-61, (2016)
[32] Kartal, ME; Bayraktar, A.; Başağa, HB, Nonlinear finite element reliability analysis of concrete-faced rockfill (CFR) dams under static effects, Appl Math Model, 36, 5229-5248, (2012) · Zbl 1254.74109
[33] Park, KC; Felippa, CA; Rebel, G., A simple algorithm for localized construction of non-matching structural interfaces, Int J Numer Meth Eng, 53, 2117-2142, (2002) · Zbl 1169.74653
[34] Simo, JC; Wriggers, P.; Taylor, RL, A perturbed Lagrangian formulation for the finite element solution of contact problems, Comput Methods Appl Mech Eng, 50, 163-180, (1986) · Zbl 0552.73097
[35] Papadopoulos, P.; Taylor, RL, A mixed formulation for the finite element solution of contact problems, Comput Methods Appl Mech Eng, 94, 373-389, (1992) · Zbl 0743.73029
[36] Zavarise, G.; Wriggers, P., A segment-to-segment contact strategy, Math Comput Modell Int J, 28, 497-515, (1998) · Zbl 1002.74564
[37] Wriggers, P.; Zavarise, G., A formulation for frictionless contact problems using a weak form introduced by Nitsche, Comput Mech, 41, 407-420, (2008) · Zbl 1162.74419
[38] Konyukhov A, Schweizerhof K (2013) Surface-to-surface contact-various aspects for implementations within the finite element method. Computational contact mechanics. Springer, Berlin, pp 209-291
[39] Bernardi, C.; Maday, Y.; Patera, AT; Brezis, H. (ed.); Lions, J-L (ed.), A new nonconforming approach to domain decomposition: the mortar element method, 13-51, (1994), New York City · Zbl 0797.65094
[40] Belgacem, FB; Hild, P.; Laborde, P., Approximation of the unilateral contact problem by the mortar finite element method, Comptes Rendus De L’Academie Des Sciences, 324, 123-127, (1997) · Zbl 0872.65057
[41] Hild, P., Numerical implementation of two nonconforming finite element methods for unilateral contact, Comput Methods Appl Mech Eng, 184, 99-123, (2000) · Zbl 1009.74062
[42] Mcdevitt, TW; Laursen, TA, A mortar-finite element formulation for frictional contact problems, Int J Numer Meth Eng, 48, 1525-1547, (2000) · Zbl 0972.74067
[43] Yang, B.; Laursen, TA; Meng, X., Two dimensional mortar contact methods for large deformation frictional sliding, Int J Numer Meth Eng, 62, 1183-1225, (2005) · Zbl 1161.74497
[44] Puso, MA; Laursen, TA; Solberg, J., A segment-to-segment mortar contact method for quadratic elements and large deformations, Comput Methods Appl Mech Eng, 197, 555-566, (2008) · Zbl 1169.74627
[45] Hesch, C.; Betsch, P., A mortar method for energy-momentum conserving schemes in frictionless dynamic contact problems, Int J Numer Meth Eng, 77, 1468-1500, (2009) · Zbl 1156.74378
[46] Tur, M.; Fuenmayor, FJ; Wriggers, P., A mortar-based frictional contact formulation for large deformations using Lagrange multipliers, Comput Methods Appl Mech Eng, 198, 2860-2873, (2009) · Zbl 1229.74141
[47] Weißenfels, C.; Wriggers, P., Methods to project plasticity models onto the contact surface applied to soil structure interactions, Comput Geotech, 65, 187-198, (2015)
[48] Puso, MA; Laursen, TA, A mortar segment-to-segment frictional contact method for large deformations, Comput Methods Appl Mech Eng, 193, 4891-4913, (2004) · Zbl 1112.74535
[49] Wohlmuth, BI, A mortar finite element method using dual spaces for the Lagrange multiplier, SIAM J Numer Anal, 38, 989-1012, (2000) · Zbl 0974.65105
[50] Flemisch, B.; Puso, MA; Wohlmuth, BI, A new dual mortar method for curved interfaces: 2D elasticity, Int J Numer Meth Eng, 63, 813-832, (2005) · Zbl 1084.74050
[51] Lamichhane, BP; Stevenson, RP; Wohlmuth, BI, Higher order mortar finite element methods in 3D with dual Lagrange multiplier bases, Numer Math, 102, 93-121, (2005) · Zbl 1082.65120
[52] Flemisch, B.; Wohlmuth, BI, Stable Lagrange multipliers for quadrilateral meshes of curved interfaces in 3D, Comput Methods Appl Mech Eng, 196, 1589-1602, (2007) · Zbl 1173.74416
[53] Hartmann, S.; Ramm, E., A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers, Finite Elem Anal Des, 44, 245-258, (2008)
[54] Popp, A.; Gitterle, M.; Gee, MW; etal., A dual mortar approach for 3D finite deformation contact with consistent linearization, Int J Numer Meth Eng, 83, 1428-1465, (2010) · Zbl 1202.74183
[55] Doca, T.; Pires, FMA; Sa, JMACD, A frictional mortar contact approach for the analysis of large inelastic deformation problems, Int J Solids Struct, 51, 1697-1715, (2014)
[56] Popp, A.; Wall, WA, Dual mortar methods for computational contact mechanics—overview and recent developments, GAMM Mitteilungen, 37, 66-84, (2014) · Zbl 1308.74119
[57] Sitzmann, S.; Willner, K.; Wohlmuth, BI, A dual Lagrange method for contact problems with regularized frictional contact conditions: modelling micro slip, Comput Methods Appl Mech Eng, 285, 468-487, (2015) · Zbl 1423.74141
[58] Wohlmuth, BI; Krause, RH, Monotone multigrid methods on nonmatching grids for nonlinear multibody contact problems, SIAM J Sci Comput, 25, 324-347, (2003) · Zbl 1163.65334
[59] Cichosz, T.; Bischoff, M., Consistent treatment of boundaries with mortar contact formulations using dual Lagrange multipliers, Comput Methods Appl Mech Eng, 200, 1317-1332, (2011) · Zbl 1225.74083
[60] Hüeber, S.; Wohlmuth, BI, A primal-dual active set strategy for non-linear multibody contact problems, Comput Methods Appl Mech Eng, 194, 3147-3166, (2005) · Zbl 1093.74056
[61] Brunssen, S.; Schmid, F.; Schäfer, M.; etal., A fast and robust iterative solver for nonlinear contact problems using a primal-dual active set strategy and algebraic multigrid, Int J Numer Meth Eng, 69, 524-543, (2006) · Zbl 1194.74370
[62] Eber, S.; Stadler, G.; Wohlmuth, BI, A primal-dual active set algorithm for three-dimensional contact problems with Coulomb friction, SIAM J Sci Comput, 30, 572-596, (2008) · Zbl 1158.74045
[63] Popp, A.; Gee, MW; Wall, WA, A finite deformation mortar contact formulation using a primal-dual active set strategy, Int J Numer Meth Eng, 79, 1354-1391, (2010) · Zbl 1176.74133
[64] Gitterle, M.; Popp, A.; Gee, MW; etal., Finite deformation frictional mortar contact using a semi-smooth Newton method with consistent linearization, Int J Numer Meth Eng, 84, 543-571, (2010) · Zbl 1202.74121
[65] Hartmann, S.; Brunssen, S.; Ramm, E.; etal., Unilateral non-linear dynamic contact of thin-walled structures using a primal-dual active set strategy, Int J Numer Meth Eng, 70, 883-912, (2007) · Zbl 1194.74218
[66] Yagawa, G.; Soneda, N.; Yoshimura, S., A large-scale finite element analysis using domain decomposition method on a parallel computer, Comput Struct, 1991, 615-625, (1991) · Zbl 0825.73711
[67] Yagawa, G.; Yoshinoka, A.; Yoshimura, S.; Soneda, N., A parallel finite element method with a supercomputer network, Comput Struct, 47, 407-418, (1993) · Zbl 0775.73301
[68] Iizuka M, Nakamura H, Garatani K, Nakajima K, Okuda H, Yagawa G (1999) GeoFEM: high performance parallel FEM for geophysical applications. In: High performance computing, second international symposium, ISHPC 99. Lecture notes in computer science, vol 1615, pp 292-303
[69] Papadrakakis, M.; Bitzarakis, S., Domain decomposition PCG methods for serial and parallel processing, Adv Eng Softw, 25, 291-307, (1996) · Zbl 0977.65116
[70] Bitzarakis, S.; Papadrakakis, M.; Katsopulos, A., Parallel solution techniques in computational structural mechanics, Comput Methods Appl Mech Eng, 148, 75-105, (1997) · Zbl 0924.73330
[71] Farhat, C.; Crivelli, L.; Roux, FX, A transient FETI methodology for large-scale parallel implicit computations in structural mechanics, Int J Numer Meth Eng, 37, 1945-1975, (1994) · Zbl 0824.73067
[72] Farhat, C.; Mandel, J.; Roux, FX, Optimal convergence properties of the FEIT domain decomposition method, Comput Methods Appl Mech Eng, 115, 367-388, (1994)
[73] Yoshimura, S.; Yamada, T.; Kawai, K.; Miyamura, T.; Ogino, M.; Shioya, R., Petascale coupled simulations of real world’s complex structures, IACM Exp, 36, 9-13, (2015)
[74] Yoshimura, S.; Shioya, R.; Noguchi, H.; Miyamura, T., Advanced general-purpose computational mechanics system for large-scale analysis and design, J Comput Appl Math, 49, 279-296, (2002) · Zbl 1058.74646
[75] Danielson, K.; Hao, S.; Liu, WK; Uras, A.; Li, SF, Parallel computational of meshless methods for explicit dynamic analysis, Int J Numer Meth Eng, 47, 1367-1379, (2000) · Zbl 0981.74078
[76] Liu, WK; Lewis, RW (ed.); Hinton, E. (ed.); Bettess, P. (ed.); Schrefler, BA (ed.), Parallel computations for mixed-time integrations, 261-277, (1987), London
[77] Liu, GR, On future computational methods for exascale computer, IACM Exp, 30, 8-10, (2011)
[78] www.top500.org. Accessed 20 Dec 2017
[79] Chen, HQ; Ma, HF; Tu, J.; Cheng, GQ; Tang, JZ, Parallel computation of seismic analysis of high arch dam, Earthq Eng Eng Vib, 7, 1-11, (2008)
[80] Zhong, H.; Lin, G., Research on parallel computing of damage prediction of high arch dams subjected to earthquakes, Chin J Comput Mech, 27, 218-224, (2010)
[81] Xu, XW; Mo, ZY, Algebraic interface based coarsening AMG preconditioner for multi-scale sparse matrices with applications to radiation hydrodynamics computation, Numer Linear Algebra Appl, 24, 2, (2017) · Zbl 1413.65081
[82] Wen, LF; Tian, R., Improved XFEM: accurate and robust dynamic crack growth simulation, Comput Methods Appl Mech Eng, 308, 256-285, (2016)
[83] Tian, R.; Yagawa, G.; Terasaka, H., Linear dependence problems of partition of unity based generalized FEMs, Comput Methods Appl Mech Eng, 195, 4768-4782, (2006) · Zbl 1125.65073
[84] Tian, R., Extra-dof-free and linearly independent enrichments in GFEM, Comput Methods Appl Mech Eng, 266, 1-22, (2013) · Zbl 1286.74110
[85] Tian, R.; To, AC; Liu, WK, Conforming local meshfree method, Int J Numer Meth Eng, 86, 335-357, (2011) · Zbl 1235.74375
[86] Shi, GM; He, YB; Wu, RA; Mo, J.; Li, YC; Zhang, YL, Object-oriented finite element parallel computation framework PANDA, Comput Aided Eng, 19, 8-14, (2010)
[87] Xu JG, Shi ZJ, Hao ZM, He YB, Li YF (2010) Design and verification of a nonlinear statics FEM parallel computing code based on PANDA framework. Chin J Solid Mech 31(special issue):294-298 (in Chinese)
[88] Liu QK, Zhao WB, Cheng J, et al (2016) A programming framework for large scale numerical simulations on unstructured mesh. In: Proceedings of the 2nd IEEE international conference on high performance and smart computing (IEEE HPSC), New York
[89] Mo, ZY; Zhang, AQ; Cao, XL; Liu, QK; Xu, XW; An, HB; Pei, WB; Zhu, XP, JASMIN: a parallel software infrastructure for scientific computing, Front Comput Sci China, 4, 480-488, (2000)
[90] http://www.caep-scns.ac.cn/JASMIN.php. Accessed 20 Dec 2017
[91] http://www.caep-scns.ac.cn/JAUMIN.php. Accessed 20 Dec 2017
[92] Belytschko, T.; Black, T., Elastic crack growth in finite elements with minimal remeshing, Int J Numer Meth Eng, 45, 601-620, (1999) · Zbl 0943.74061
[93] Moës, N.; Dolbow, J.; Belytschko, T., A finite element method for crack growth without remeshing, Int J Numer Meth Eng, 46, 131-150, (1999) · Zbl 0955.74066
[94] Tian, R.; Wen, LF, Improved XFEM-an extra-dof free, well-conditioning, and interpolating XFEM, Comput Methods Appl Mech Eng, 285, 639-658, (2015) · Zbl 1423.74926
[95] Sulsky, D.; Chen, Z.; Schreyer, HL, A particle method for history-dependent materials, Comput Methods Appl Mech Eng, 118, 179-196, (1994) · Zbl 0851.73078
[96] Liu, MB; Liu, GR, Smoothed particle hydrodynamics (SPH): an overview and recent developments, Arch Comput Methods Eng, 17, 25-76, (2010) · Zbl 1348.76117
[97] Tian, R., Simulation at extreme-scale: co-design thinking and practices, Arch Comput Methods Eng, 21, 39-58, (2014)
[98] Wang YR, Li LS, Tian R (2017) Large-scale parallelization of smoothed particle hydrodynamics method on heterogeneous cluster. In: 46th international conference on parallel processing (ICPP2017), Bristol, UK, 14-17 Aug
[99] Wang YR, Li LS, Wang JT, Tian R (2016) GPU acceleration of smoothed particle hydrodynamics for the Navier-Stokes equations. In: 24th Eruomicro international conference on parallel, distributed, and network-based processing (PDP2016), Greece, pp 478-485. https://doi.org/10.1109/PDP.2016.28
[100] Li LS, Wang YR, Ma ZT, Tian R (2014) petaPar: a scalable Petascale framework for meshfree/particle simulation. In: Proceedings of the 2014 IEEE international symposium on parallel and distributed processing with applications (ISPA’14), pp 50-57
[101] Balay S, Abhyankar S, Adams M, et al (2014) PETSc users manual (revision 3.5). Argonne National Laboratory, ANL-95/11
[102] Berger, M.; Bokhari, S., A partitioning strategy for nonuniform problems on multiprocessors, IEEE Trans Comput, 36, 570-580, (1987)
[103] Karypis, G.; Kumar, V., A fast and high quality multilevel scheme for partitioning irregular graphs, SIAM J Sci Comput, 20, 359-392, (2006) · Zbl 0915.68129
[104] Mazars, J., A description of microscale and macroscale damage of concrete structures, Eng Fract Mech, 107, 83-89, (1985)
[105] Duncan, JM; Byrne, P.; Wong, KS; etal., Strength, stress-strain and bulk modulus parameters for finite element analysis of stress and movements in soil masses, J Consult Clin Psychol, 49, 554-567, (1981)
[106] Yu, YZ; Zhang, BY; Yuan, HN, An intelligent displacement back-analysis method for earth-rockfill dams, Comput Geotech, 34, 423-434, (2007)
[107] Li, GY; Mi, ZK; Fu, H., Experimental studies on rheological behaviors for rockfills in concrete faced rockfill dam, Rock Soil Mech, 25, 1712-1716, (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.