zbMATH — the first resource for mathematics

On positive proportion of rank-zero twists of elliptic curves over $$\mathbb{Q}$$. (English) Zbl 1323.11038
For $$E/\mathbb{Q}$$ an elliptic curve and $$r$$ an integer let $$E^{(r)}$$ be the $$r$$-twist of $$E$$. In the paper under review the author gives a new proof of the following result of A. Dabrowski and M. Wieczorek (first proved in [J. Number Theory 124, No. 2, 364–379 (2007; Zbl 1117.11032)] under the assumption of a variant of the twin primes conjecture, and then reproved unconditionally by A. Dabrowski [C. R., Math., Acad. Sci. Paris 346, No. 9–10, 483–486 (2008; Zbl 1210.11067)]): for every $$k \geq 1$$ there is a family $$E_1, \ldots, E_k$$ of pairwise non-isogenous elliptic curves over $$\mathbb{Q}$$ such that $$\text{rank} E_1^{(p)}(\mathbb{Q}) = \cdots = \text{rank} E_k^{(p)}(\mathbb{Q})=0$$ for a positive proportion of primes $$p$$.
The author constructs an explicit infinite family of elliptic curves $$E_{A,B}$$ with integral coefficients, and uses complete 2-descent over $$\mathbb{Q}$$ to prove that the equality $$\text{rank} E_{A,B}^{(p)}(\mathbb{Q})=0$$ holds as long as $$p$$ satisfies certain congruence conditions (depending on $$A$$ and $$B$$ in a simple way); by Dirichlet’s theorem on primes in arithmetic progressions, this is enough to establish the desired result.
The proof is very close in spirit to that of [Zbl. 1210.11067], but while it is immediate to show that the family of elliptic curves $$E_{A,B}$$ is infinite, the corresponding statement for the families considered by Dabrowski depends on deep results of H. Iwaniec [Invent. Math. 47, 171–188 (1978; Zbl 0389.10031)] and J.-R. Chen [Sci. Sin. 16. 157–176 (1973; Zbl 0319.10056)].
MSC:
 11G05 Elliptic curves over global fields 14H52 Elliptic curves
Full Text:
References:
 [1] DOI: 10.1112/S0025579300000413 · Zbl 1105.14044 · doi:10.1112/S0025579300000413 [2] DOI: 10.1006/jnth.2000.2599 · Zbl 1014.11039 · doi:10.1006/jnth.2000.2599 [3] DOI: 10.1007/s002080050209 · Zbl 0933.11034 · doi:10.1007/s002080050209 [4] DOI: 10.1007/978-1-4757-1920-8 · doi:10.1007/978-1-4757-1920-8 [5] DOI: 10.1007/BFb0062705 · doi:10.1007/BFb0062705 [6] DOI: 10.1007/s002220050275 · Zbl 0937.11017 · doi:10.1007/s002220050275 [7] DOI: 10.1007/s11425-006-2048-7 · Zbl 1118.11029 · doi:10.1007/s11425-006-2048-7 [8] Kolyvagin, Izv. Acad. Nauk USSR 52 pp 522– (1988) [9] DOI: 10.1112/S0025579312000046 · Zbl 1281.11053 · doi:10.1112/S0025579312000046 [10] DOI: 10.1515/crll.1999.024 · Zbl 0968.11023 · doi:10.1515/crll.1999.024 [11] DOI: 10.1016/j.jnt.2003.12.015 · Zbl 1076.11036 · doi:10.1016/j.jnt.2003.12.015 [12] DOI: 10.1090/S0894-0347-98-00263-X · Zbl 0904.11015 · doi:10.1090/S0894-0347-98-00263-X [13] Iwaniec, Israel J. Math. 120 pp 155– (2000) · Zbl 0992.11037 · doi:10.1007/s11856-000-1275-9 [14] DOI: 10.1016/j.jnt.2006.09.005 · Zbl 1117.11032 · doi:10.1016/j.jnt.2006.09.005 [15] DOI: 10.1007/BF01578070 · Zbl 0389.10031 · doi:10.1007/BF01578070 [16] DOI: 10.1016/j.crma.2008.03.025 · Zbl 1210.11067 · doi:10.1016/j.crma.2008.03.025 [17] DOI: 10.4310/MRL.1997.v4.n3.a12 · Zbl 0893.11034 · doi:10.4310/MRL.1997.v4.n3.a12 [18] Chen, Sci. Sinica 16 pp 157– (1973) [19] DOI: 10.1090/S0894-0347-01-00370-8 · Zbl 0982.11033 · doi:10.1090/S0894-0347-01-00370-8 [20] Waldspurger, J. Math. Pures Appl. (9) 60 pp 375– (1981)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.