zbMATH — the first resource for mathematics

On character sums with distances on the upper half plane over a finite field. (English) Zbl 1253.11109
Let \(q\) be odd, and \(\alpha\) be a non-square in \({\mathbb F}_q\). Let \({\mathcal H}_q = \left\{ x + y \sqrt{\alpha} : x \in {\mathbb F}_q, y \in {\mathbb F}_q^* \right\}\) be upper half plane over the finite field \({\mathbb F}_q\). Let \(\mathcal E, \mathcal F\) be subsets of \({\mathcal H}_q\) with size \(E, F\), respectively, and let \(\psi\) be a non-trivial additive character on \({\mathbb F}_q\). The authors prove the estimate \[ \left| \sum_{w \in \mathcal E, z \in \mathcal F} \psi(\delta(w,z)) \right| \leq \min \left\{ q + \sqrt{2qE}, \sqrt{3} q^{5/4} \right\} \sqrt{EF}, \] where \(\delta\) is the distance function on \({\mathcal H}_q\). This has consequences for the Erdös distance problem on \({\mathcal H}_q\). The method of proof uses the techniques in [D. Hart, A. Iosevich, D. Koh and M. Rudnev [Trans. Am. Math. Soc. 363, No. 6, 3255–3275 (2011; Zbl 1244.11013)] and Le Anh Vinh [Electron. J. Comb. 15, No. 1, Research Paper R5, 18 p. (2008; Zbl 1206.05054)] in combination to produce a stronger result than otherwise obtainable independently.

11T24 Other character sums and Gauss sums
11T60 Finite upper half-planes
Full Text: DOI
[1] Alon, N.; Spencer, J.H., The probabilistic method, (2000), Wiley-Interscience
[2] Angel, J., Finite upper half planes over finite fields, Finite fields appl., 2, 62-86, (1996) · Zbl 0851.11072
[3] Angel, J.; Evans, R., Diameters of finite upper half plane graphs, J. graph theory, 23, 129-137, (1996) · Zbl 0857.05032
[4] Bourgain, J.; Katz, N.; Tao, T., A sum product estimate in finite fields and applications, Geom. funct. anal., 14, 27-57, (2004) · Zbl 1145.11306
[5] Chai, C.-L.; Li, W.-C.W., Character sums, automorphic forms, equidistribution, and Ramanujan graphs. II. eigenvalues of terras graphs, Forum math., 16, 631-661, (2004) · Zbl 1065.11047
[6] Drmota, M.; Tichy, R., Sequences, discrepancies and applications, (1997), Springer-Verlag Berlin · Zbl 0877.11043
[7] Dvir, Z., On the size of Kakeya sets in finite fields, J. amer. math. soc., 22, 1093-1097, (2009) · Zbl 1202.52021
[8] Iosevich, A.; Rudnev, M., Erdős distance problem in vector spaces over finite fields, Trans. amer. math. soc., 359, 6127-6142, (2007) · Zbl 1145.11083
[9] Katamoto, A., On 3rd and 4th moments of finite upper half plane graphs, Finite fields appl., 13, 249-258, (2007) · Zbl 1163.11083
[10] Katz, N.M., Estimates for Soto-andrade sums, J. reine angew. math., 438, 143-161, (1993) · Zbl 0798.11053
[11] Kuipers, L.; Niederreiter, H., Uniform distribution of sequences, (1974), Wiley-Interscience Publ. · Zbl 0281.10001
[12] Li, W.-C.W., A survey of Ramanujan graphs, (), 127-143 · Zbl 0868.05046
[13] Li, W.-C.W., Eigenvalues of Ramanujan graphs, (), 387-403 · Zbl 0981.11041
[14] Li, W.-C.W., Ramanujan graphs and Ramanujan hypergraphs, (), 401-427 · Zbl 1134.11021
[15] Lidl, R.; Niederreiter, H., Finite fields, (1997), Cambridge Univ. Press Cambridge
[16] Shaheen, A.; Terras, A., Fourier expansions of complex-valued Eisenstein series on finite upper half planes, Int. J. math. math. sci., 2006, (2006), Article ID 63916, 17pp · Zbl 1163.11037
[17] Shparlinski, I.E., On some generalisations of the Erdős distance problem over finite fields, Bull. austral. math. soc., 73, 285-292, (2006) · Zbl 1093.11073
[18] Shparlinski, I.E., On the set of distances between two sets over finite fields, Int. J. math. math. sci., 2006, (2006), Article ID 59482, 5 pp · Zbl 1134.11044
[19] Soto-Andrade, J.; Vargas, J., Twisted spherical functions on the finite Poincaré upper half-plane, J. algebra, 248, 724-746, (2002) · Zbl 0998.43003
[20] Terras, A., Fourier analysis on finite groups and applications, (1999), Cambridge Univ. Press Cambridge · Zbl 0928.43001
[21] Vinh, L.A., Explicit Ramsey graphs and Erdős distance problem over finite euclidean and non-Euclidean spaces, Electron. J. combin., 15, (2008), Article R5 · Zbl 1206.05054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.