×

Data structure for on-lattice cluster-cluster aggregation model performance optimization. (English) Zbl 1362.82037

Summary: A compounded data structure is developed to optimize the simulation of colloidal aggregation using the on-lattice Cluster-Cluster Aggregation (CCA) model. Brownian motion, collision detection and aggregation as the basic operations in the CCA simulation are illustrated and evaluated based on the compounded data structure, respectively. The critical improvement of our algorithm is in distinguishing any selected clusters consisting particles and ascertaining their neighboring positions efficiently in simulation, which was traditionally performed by the exhaustive search in the whole system. Analytical results show that the new algorithm achieves linear computational complexity in each of the main operations, which is very appealing in performance optimization in using on-lattice CCA simulations.

MSC:

82C22 Interacting particle systems in time-dependent statistical mechanics
68P05 Data structures
82C80 Numerical methods of time-dependent statistical mechanics (MSC2010)
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Loh, N.; Hampton, C.; Martin, A.; Starodub, D.; Sierra, R.; Barty, A.; Aquila, A.; Schulz, J.; Lomb, L.; Steinbrener, J., Nature, 486, 513 (2012)
[2] Matthews, L.; Land, V.; Hyde, T., Astrophys. J., 744, 8 (2012)
[3] Munaò, G.; Preisler, Z.; Vissers, T.; Smallenburg, F.; Sciortino, F., Soft Matter, 9, 2652 (2013)
[4] Meakin, P., J. Sol-Gel Sci. Technol., 15, 97 (1999)
[5] Xiong, H.; Yuan, Y.; Li, H.; Zhu, H.; Jiang, X., Acta Phys.-Chim. Sin., 23, 1241 (2007)
[6] Jullien, R.; Botet, R., Aggregation and fractal aggregates (1987), World Scientific Singapore · Zbl 0726.92030
[7] Klein, R.; Meakin, P., Nature, 339, 360 (1989)
[8] Vormoor, O., Comput. Phys. Commun., 144, 121 (2002)
[9] González, S.; Thornton, A.; Luding, S., Comput. Phys. Commun., 182, 1842 (2011)
[10] Lin, M.; Lindsay, H.; Weitz, D.; Ball, R.; Klein, R.; Meakin, P., Phys. Rev. A, 41, 2005 (1990)
[11] Lin, M.; Lindsay, H.; Weitz, D.; Klein, R.; Ball, R.; Meakin, P., J. Phys.: Condens. Matter, 2, 3093 (1990)
[12] Sandkühler, P.; Lattuada, M.; Wu, H.; Sefcik, J.; Morbidelli, M., Adv. Colloid Interface Sci., 113, 65 (2005)
[13] Kusaka, Y.; Fukasawa, T.; Adachi, Y., J. Colloid Interface Sci., 363, 34 (2011)
[14] Qian, C.; Li, H.; Zhong, R.; Luo, M.; Ye, G., Chinese Physics B, 18, 1947 (2009)
[17] Kim, S.; Lee, K. S.; Zachariah, M. R.; Lee, D., J. Colloid Interface Sci., 344, 353 (2010)
[18] Xiong, H.; Li, H.; Chen, W.; Xu, J.; Wu, L., J. Colloid Interface Sci., 344, 37 (2010)
[19] Tan, Z.; Zou, X.; Zhang, W.; Jin, Z., Phys. Rev. E, 62, 734 (2000)
[20] Kempf, S.; Pfalzner, S., Comput. Phys. Commun., 137, 225 (2001)
[21] Vicsek, T.; Family, F., Phys. Rev. Lett., 52, 1669 (1984)
[22] Netz, P. A.; Samios, D., Macromol. Theory Simul., 3, 607 (1994)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.