×

zbMATH — the first resource for mathematics

Experimental NMR realization of a generalized quantum search algorithm. (English) Zbl 0969.81513
Summary: A generalized quantum search algorithm, where phase inversions for the marked state and the prepared state are replaced by \(\pi{}\)/2 phase rotations, is realized in a 2-qubit NMR heteronuclear system. The quantum algorithm searches a marked state with a smaller step compared to standard Grover algorithm. Phase matching requirement in quantum searching is demonstrated by comparing it with another generalized algorithm where the two phase rotations are \(\pi{}\)/2 and 3\(\pi{}\)/2, respectively. Pulse sequences which include non-90\(°{}\) pulses are given.

MSC:
81P68 Quantum computation
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Grover, L.K., Phys. rev. lett., 79, 325, (1997)
[2] Brassard, G., Science, 275, 627, (1997)
[3] D.R. Simon, in: Proc. of 35th Annual Symposium on the Foundations of Computer Sciences, pp. 116-123
[4] Twamley, J., J. phys. A, 33, 8973, (2000) · Zbl 0958.81006
[5] Guo, H., Commun. theor. phys., 35, 385, (2001)
[6] Brassard, G., (), 820-831
[7] Grover, L.K., Phys. rev. lett., 80, 4329, (1998)
[8] Biron, D.; Biham, O.; Biham, E.; Grassl, M.; Lidar, D.A., (), 140-147
[9] Carlini, A.; Hosoya, A., Phys. lett. A, 280, 114, (2001)
[10] Chi, D.; Kim, J., Chaos solitons fractals, 10, 1689, (1999)
[11] Long, G.L., Commun. theor. phys., 32, 335, (1999)
[12] Long, G.L., Phys. lett. A, 262, 27, (1999)
[13] Long, G.L., J. phys. A, 34, 867, (2001)
[14] Chuang, I.L., Phys. rev. lett., 80, 3408, (1998)
[15] Fu, L.P., Chin. J. magn. res., 16, 341, (1999)
[16] Jones, J.A., Nature, 393, 344, (1998)
[17] Vandersypen, L.M.K., Appl. phys. lett., 76, 646, (2000)
[18] Jones, J.A.; Mosca, M., Phys. rev. lett., 83, 1050, (1999)
[19] Knill, E., Phys. rev. A, 57, 3348, (1998)
[20] Chuang, I.L., Proc. R. soc. London A, 454, 447, (1998)
[21] Long, G.L., Phys. rev. A, 61, 042305, (2000)
[22] Pablo-Norman, B.; Ruiz-Altaba, M., Phys. rev. A, 61, 012301, (2000)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.