×

Modeling elastic and poroelastic wave propagation in complex geological structures. (English) Zbl 1390.74101

Nagel, Wolfgang E. (ed.) et al., High performance computing in science and engineering ’07. Transactions of the High Performance Computing Center, Stuttgart (HLRS) 2007). Papers presented at 10th results and review workshop, Stuttgart, Germany, October 4–5, 2007. Berlin: Springer (ISBN 978-3-540-74738-3/hbk). 587-601 (2008).
Summary: The description of wave propagation in complex geological structures is of fundamental importance for earth sciences, in particular solid earth geophysics. Both, modern seismology and exploration geophysics increasingly make use of numerical procedures to simulate waves within the earth crust, the mantle and hydrocarbon reservoirs.
It is the main goal of rock physics research to establish relationships between seismic waves and the properties of the subsurface. For this purpose, elastic and coupled poroelastic wave equations are solved using an explicit, high-order, finite-difference (FD) algorithm. The results are used for the verification of theoretical scattering attenuation estimates in heterogeneous, effectively anisotropic media and for the simulation of waves in fluid-saturated porous rocks. It is shown that by using modified FD operators, the stability of the scheme can be significantly increased when high material contrast are present within the medium. An improved understanding of wave dispersion and attenuation in heterogeneous rocks with partial saturation provides a basis for further rock physics applications.
For the entire collection see [Zbl 1130.76008].

MSC:

74J10 Bulk waves in solid mechanics
74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74L05 Geophysical solid mechanics
74S20 Finite difference methods applied to problems in solid mechanics
86A60 Geological problems
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Maurice A. Biot. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low frequency range. J. Acoust. Soc. Am., 28(2):168-178, March 1956.
[2] Maurice A. Biot. Mechanics of deformation and acoustic propagation in porous media. J. Appl. Phys., 33(4):1482-1498, April 1962. · Zbl 0104.21401 · doi:10.1063/1.1728759
[3] Miroslav Brajanovski, Tobias M. Müller, and Boris Gurevich. Characteristic frequencies of seismic attenuation due to wave-induced fluid flow in fractured porous media. Geophys. J. Int., 166:574-578, 2006. · doi:10.1111/j.1365-246X.2006.03068.x
[4] Thomas Bohlen. Parallel 3-D viscoelastic finite difference seismic modelling. Computers & Geosciences, 28:887-899, 2002. · doi:10.1016/S0098-3004(02)00006-7
[5] José M. Carcione. Wave fields in real media. Pergamon, 2001. · Zbl 1051.76068
[6] Gary C. Cohen. Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin, Heidelberg, New York, 2002. ISBN 3-540-41598-X. · Zbl 0985.65096
[7] José M. Carcione and Gerardo Quiroga-Goode. Some aspects of the physics and numerical modeling of Biot compressional wave. J. Comp. Acoust., 4:261-280, 1995. · doi:10.1142/S0218396X95000136
[8] Hans B. Helle, Nam H. Pham, and José M. Carcione. Velocity and attenuation in partially saturated rocks: poroelastic numerical experiments. Geophys. Prosp., 51:551-566, 2003. · doi:10.1046/j.1365-2478.2003.00393.x
[9] Alan R. Levander. Fourth-order finite-difference PS-V seismograms. Geophysics, 53(11):1425-1436, November 1988. · doi:10.1190/1.1442422
[10] Tobias M. Müller and Serge A. Shapiro. Most probable seismic pulses in single realizations of 2-d and 3-d random media. Geophys. J. Int., 144:83-95, 2001. · doi:10.1046/j.1365-246x.2001.00320.x
[11] Tobias M. Müller and Serge A. Shapiro. Scattering attenuation in randomly layered structures with finite lateral extent: A hybrid Q model. Geophysics, 69:1530-1534, 2004. · doi:10.1190/1.1836826
[12] Tobias M. Müller, Christoph Sick, and Serge A. Shapiro. Wave propagation in heterogeneous media. part 2: Attenuation of seismic waves due to scattering. In E. Krause and W. Jäger, editors, High Performance Computing in Science and Engineering ’01, Berlin, 2001. Springer Verlag. · Zbl 1068.74032
[13] John W. Rudnicki. Fluid mass sources and point forces in linear elastic diffusive solids. Mechanics of Materials, 5:383-393, 1986. · doi:10.1016/0167-6636(86)90042-6
[14] Erik H. Saenger, Norbert Gold, and Serge A. Shapiro. Modeling the propagation of elastic waves using a modified finite-difference grid. Wave Motion, 31:77-92, 2000. · Zbl 1074.74648 · doi:10.1016/S0165-2125(99)00023-2
[15] Serge A. Shapiro and Peter Hubral. Elastic waves in random media. Springer Verlag, Heidelberg, 1999.
[16] Dong-Hoon Sheen, Kagan Tuncay, Chang-Eob Baag, and Peter J. Ortoleva. Parallel implementation of a velocity-stress staggered-grid finite-differences method for 2-D poroelastic wave propagation. Computers & Geosciences, 32:1182-1191, 2006. · doi:10.1016/j.cageo.2005.10.017
[17] Jean Virieux. P-SV wave propagation in heterogeneous media: Velocity-stress finite-difference method. Geophysics, 51(4):889-901, April 1986. · doi:10.1190/1.1442147
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.