×

An efficient linear second order unconditionally stable direct discretization method for the phase-field crystal equation on surfaces. (English) Zbl 1481.82014

Summary: We develop an unconditionally stable direct discretization scheme for solving the phase-field crystal equation on surfaces. The surface is discretized by using an unstructured triangular mesh. Gradient, divergence, and Laplacian operators are defined on triangular meshes. The proposed numerical method is second-order accurate in space and time. At each time step, the proposed computational scheme results in linear elliptic equations to be solved, thus it is easy to implement the algorithm. It is proved that the proposed scheme satisfies a discrete energy-dissipation law. Therefore, it is unconditionally stable. A fast and efficient biconjugate gradients stabilized solver is used to solve the resulting discrete system. Numerical experiments are conducted to demonstrate the performance of the proposed algorithm.

MSC:

82C26 Dynamic and nonequilibrium phase transitions (general) in statistical mechanics
82D25 Statistical mechanics of crystals
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Elder, K. R.; Katakowski, M.; Haataja, M.; Grant, M., Modeling elasticity in crystal growth, Phys. Rev. Lett., 88, 24, 245701 (2002)
[2] Elder, K. R.; Grant, M., Modeling elastic and plastic deformations in nonequilibrium processing using phase field crystals, Phys. Rev. E, 70, 5, 051605 (2004)
[3] Marconi, U. M.B.; Tarazona, P., Dynamic density functional theory of liquids, J. Comput. Phys., 110, 16, 8032-8044 (1999)
[4] Provatas, N.; Dantzig, J. A.; Athreya, B.; Chan, P.; Stefanovic, P.; Goldenfeld, N.; Elder, K. R., Using the phase-field crystal method in the multiscale modeling of microstructure evolution, JOM, 59, 7, 83-90 (2007)
[5] Wise, S. M.; Wang, C.; Lowengrub, J. S., An energy stable and convergent finite-difference scheme for the phase field crystal equation, SIAM J. Numer. Anal., 47, 3, 2269-2288 (2009) · Zbl 1201.35027
[6] Hu, Z.; Wise, S. M.; Wang, C.; Lowengrub, J. S., Stable and efficient finite-difference nonlinear-multigrid schemes for the phase field crystal equation, J. Comput. Phys., 228, 15, 5323-5339 (2009) · Zbl 1171.82015
[7] Zhang, Z.; Ma, Y.; Qiao, Z., An adaptive time-stepping strategy for solving the phase field crystal model, J. Comput. Phys., 249, 204-215 (2013) · Zbl 1305.82009
[8] Gomez, H.; Nogueira, X., An unconditionally energy-stable method for the phase field crystal equation, Comput. Methods Appl. Mech. Eng., 249, 52-61 (2012) · Zbl 1348.74280
[9] Lee, H. G.; Shin, J.; Lee, J. Y., First and second order operator splitting methods for the phase field crystal equation, J. Comput. Phys., 299, 82-91 (2015) · Zbl 1351.74156
[10] Glasner, K.; Orizaga, S., Improving the accuracy of convexity splitting methods for gradient flow equations, J. Comput. Phys., 315, 52-64 (2016) · Zbl 1349.65515
[11] Dehghan, M.; Mohammadi, V., The numerical simulation of the phase field crystal (PFC) and modified phase field crystal (MPFC) models via global and local meshless methods, Comput. Methods Appl. Mech. Eng., 298, 453-484 (2016) · Zbl 1423.76321
[12] Li, Y.; Kim, J., An efficient and stable compact fourth-order finite difference scheme for the phase field crystal equation, Comput. Methods Appl. Mech. Eng., 319, 194-216 (2017) · Zbl 1439.76122
[13] Yang, X.; Han, D., Linearly first-and second-order, unconditionally energy stable schemes for the phase field crystal model, J. Comput. Phys., 330, 1116-1134 (2017) · Zbl 1380.65209
[14] Witkowski, T.; Backofena, R.; Voigt, A., The influence of membrane bound proteins on phase separation and coarsening in cell membranes, Phys. Chem. Chem. Phys., 14, 14509-14515 (2012)
[15] Elliott, C. M.; Ranner, T., Evolving surface finite element method for the Cahn-Hilliard equation, Numer. Math., 129, 483-534 (2015) · Zbl 1312.65159
[16] Gfrerer, M. H.; Schanz, M., A high-order FEM with exact geometry description for the Laplacian on implicitly defined surfaces, Int. J. Numer. Methods Eng., 16, 1-16 (2018)
[17] Dziuk, G.; Elliott, C. M., An Eulerian approach to transport and diffusion on evolving implicit surfaces, Comput. Visual. Sci., 13, 17-28 (2010) · Zbl 1220.65132
[18] Leung, S.; Lowengrub, J.; Zhao, H. K., A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion, J. Comput. Phys., 230, 2540-2561 (2011) · Zbl 1316.65089
[19] Jeong, D.; Kim, J., Microphase separation patterns in Diblock copolymers on curved surfaces using a nonlocal Cahn-Hilliard equation, Eur. Phys. J. E, 38, 1-7 (2015)
[20] Lee, H. G.; Kim, J., A simple and efficient finite difference method for the phase-field crystal equation on curved surfaces, Comput. Methods Appl. Mech. Eng., 307, 32-43 (2016) · Zbl 1436.74084
[21] Li, Y.; Kim, J.; Wang, N., An unconditionally energy-stable second-order time-accurate scheme for the Cahn-Hilliard equation on surfaces, Commun. Nonlinear. Sci. Numer. Simul., 53, 213-227 (2017) · Zbl 1510.82057
[22] Li, Y.; Qi, X.; Kim, J., Direct discretization method for the Cahn-Hilliard equation on an evolving surface, J. Sci. Comput., 77, 2, 1147-1163 (2018) · Zbl 1407.65116
[23] Guillén-González, F.; Tierra, G., Second order schemes and time-step adaptivity for Allen-Cahn and Cahn-Hilliard models, Comput. Math. Appl., 68, 8, 821-846 (2014) · Zbl 1362.65104
[24] Li, Y.; Guo, S., Triply periodic minimal surface using a modified Allen-Cahn equation, Appl. Math. Comput., 295, 84-94 (2017) · Zbl 1411.82029
[25] Li, Y.; Lee, H. G.; Xia, B.; Kim, J., A compact fourth-order finite difference scheme for the three-dimensional Cahn-Hilliard equation, Comput. Phys. Commun., 200, 108-116 (2016) · Zbl 1352.65244
[26] Li, D.; Qiao, Z., On second order semi-implicit fourier spectral methods for 2D Cahn-Hilliard equations, J. Sci. Comput., 70, 301-341 (2017) · Zbl 1434.65206
[27] Yan, Y.; Chen, W.; Wang, C.; Wise, S. M., A second-order energy stable BDF numerical scheme for the Cahn-Hilliard equation, Commun. Comput. Phys., 23, 2, 572-602 (2018) · Zbl 1488.65367
[28] van der Vorst, H. A., BI-CGSTAB: a fast and smoothly converging variant of BI-CG for the solution of nonsymmetriclinear systems, SIAM J. Sci. Stat. Comput., 13, 2, 631-644 (1992) · Zbl 0761.65023
[29] Li, Y.; Choi, Y.; Kim, J., Computationally efficient adaptive time step method for the Cahn-Hilliard equation, Comput. Math. Appl., 73, 8, 1855-1864 (2017) · Zbl 1372.65235
[30] Backofen, R.; Barmak, K.; Elder, K. E.; Voigt, A., Capturing the complex physics behind universal grain size distributions in thin metallic films, Acta Mater., 64, 72-77 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.