×

Quantum feedback: theory, experiments, and applications. (English) Zbl 1366.81191

Summary: The control of individual quantum systems is now a reality in a variety of physical settings. Feedback control is an important class of control methods because of its ability to reduce the effects of noise. In this review we give an introductory overview of the various ways in which feedback may be implemented in quantum systems, the theoretical methods that are currently used to treat it, the experiments in which it has been demonstrated to date, and its applications. In the last few years there has been rapid experimental progress in the ability to realize quantum measurement and control of mesoscopic systems. We expect that the next few years will see further rapid advances in the precision and sophistication of feedback control protocols realized in the laboratory.

MSC:

81Q93 Quantum control
81V80 Quantum optics
82D80 Statistical mechanics of nanostructures and nanoparticles
81P45 Quantum information, communication, networks (quantum-theoretic aspects)
81V10 Electromagnetic interaction; quantum electrodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Mabuchi, H.; Khaneja, N., Principles and applications of control in quantum systems, Internat. J. Robust Nonlinear Control, 15, 647-667 (2005) · Zbl 1090.93004
[2] D’Alessandro, D., Introduction to Quantum Control and Dynamics (2007), Chapman and Hall, Boca Raton, LA
[3] Rouchon, P., Quantum systems and control, Arima, 9, 325-357 (2008)
[4] Dong, D. Y.; Petersen, I. R., Quantum control theory and applications: a survey, IET Control Theory Appl., 4, 2651-2671 (2010)
[5] Altafini, C.; Ticozzi, F., Modeling and control of quantum systems: an introduction, IEEE Trans. Automat. Control, 57, 1898-1917 (2012) · Zbl 1369.81040
[6] Huang, G.; Tarn, T. J.; Clark, J. W., On the controllability of quantum-mechanical systems, J. Math. Phys., 24, 2608-2618 (1983) · Zbl 0539.93003
[7] Bechhoefer, J., Feedback for physicists: A tutorial essay on control, Rev. Modern Phys., 77, 783-836 (2005)
[8] Brif, C.; Chakrabarti, R.; Rabitz, H., Control of quantum phenomena: past, present and futures, New J. Phys., 12, Article 075008 pp. (2010) · Zbl 1445.81029
[9] Wiener, N., Cybernetics: or Control and Communication in the Animal and the Machine (1965), The MIT Press, Cambridge · Zbl 0155.27901
[10] Rugh, W. J., Linear System Theory (1996), Prentice Hall, New Jersey · Zbl 0892.93002
[11] Kalman, R. E.; Ho, Y. C.; Narendra, K. S., Controllability of linear dynamical systems, Contrib. Differ. Equ., 1, 189-213 (1963) · Zbl 0151.13303
[12] Bellman, R., Introduction to Matrix Analysis (1960), McGrw-Hill Book Company: McGrw-Hill Book Company New York · Zbl 0124.01001
[13] Athans, M.; Falb, P., Optimal Control: An Introduction to the Theory and its Applications (2006)
[14] Isidori, A., Nonlinear Control Systems (1995), Springer: Springer London · Zbl 0569.93034
[15] Kang, Y.; Zhai, D. H.; Liu, G. P.; Zhao, Y. B.; Zhao, P., Stability analysis of a class of hybrid stochastic retarded systems under asynchronous switching, IEEE Trans. Automat. Control, 59, 1511-1523 (2014) · Zbl 1360.93742
[16] Kang, Y.; Zhai, D. H.; Liu, G. P.; Zhao, Y. B., On input-to-state stability of switched stochastic nonlinear systems under extended asynchronous switching, IEEE Trans. Cybern., 46, 1092-1105 (2015)
[17] Nielsen, M. A.; Chuang, I. L., Quantum Computation and Quantum Information (2000), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 1049.81015
[18] Diels, H., Antike Technik (1920), Teubner: Teubner Berlin · JFM 45.0095.08
[19] Mayr, O., The Origins of Feedback Control (1970), The M.I.T. Press · Zbl 0243.93001
[20] Lepschy, A. M., Feedback control in ancient water and mechanical clocks, IEEE Trans. Educ., 35, 3-10 (1992)
[21] Maxwell, J. C., On governors, Proc. R. Soc. Lond., 16, 270-283 (1868) · JFM 01.0337.01
[22] Wiseman, H. M.; Milburn, G. J., Quantum Measurement and Control (2010), Cambridge University Press: Cambridge University Press Cambridge, United Kingdom · Zbl 1293.81023
[23] James, M. R., Control Theory: From Classical to Quantum Optimal, Stochastic, and Robust Control (2005), Australian National University
[24] Mabuchi, H.; Doherty, A. C., Cavity quantum electrodynamics: Coherence in context, Science, 298, 1372-1377 (2002)
[25] Habib, S.; Jacobs, K.; Mabuchi, H., Quantum feedback control: How can we control quantum systems without disturbing them?, Los Alamos Sci., 27, 126-135 (2002)
[26] Zhang, G.; James, M. R., Quantum feedback networks and control: A brief survey, Chin. Sci. Bull., 5, 2200-2214 (2012)
[27] Serafini, A., Feedback control in quantum optics: an overview of experimental breakthroughs and areas of application, ISRN Opt., 2012, Article 275016 pp. (2012)
[28] Srinivas, M. D.; Davies, E. B., Photon counting probabilities in quantum optics, J. Modern Opt., 28, 981 (1981)
[29] Davies, E. B., Quantum stochastic processes, Comm. Math. Phys., 15, 277-304 (1969) · Zbl 0184.54102
[30] Davies, E. B., Quantum stochastic processes II, Comm. Math. Phys., 19, 83-105 (1970) · Zbl 0199.28202
[31] Davies, E. B., Quantum stochastic processes III, Comm. Math. Phys., 22, 51-70 (1971) · Zbl 0217.50701
[32] Carmichael, H. J.; Singh, S.; Vyas, R.; Rice, P. R., Photoelectron waiting times and atomic state reduction in resonance fluorescence, Phys. Rev. A, 39, 1200-1218 (1989)
[33] Carmichael, H. J., Statistical Methods in Quantum Optics 2: Non-Classical Fields (2008), Springer: Springer New York · Zbl 1130.81059
[34] Dalibard, J.; Castin, Y.; Mølmer, K., Wave-function approach to dissipative processes in quantum optics, Phys. Rev. Lett., 68, 580-583 (1992)
[35] Hegerfeldt, G. C.; Wilser, T. S., Ensemble or individual system, collapse or no collapse: a description of a single radiating atom, (Doebner, H. D.; Scherer, W.; Schroeck, F., Classical and Quantum Systems, in: Proceedings of the Second International Wigner Symposium (1992)), 104-115
[36] Gisin, N., Quantum measurements and stochastic processes, Phys. Rev. Lett., 52, 1657-1660 (1984)
[37] Diosi, L., Stochastic pure state representation for open quantum systems, Phys. Lett. A, 114, 451-454 (1986)
[38] Barchielli, A.; Lupieri, G., Quantum stochastic calculus, operation valued stochastic processes and continual measurements in quantum mechanics, J. Math. Phys., 26, 2222 (1985) · Zbl 0574.60060
[39] Belavkin, V. P., Non-demolition measurement and control in quantum dynamical systems, (Blaquiere, A.; Diner, S.; Lochak, G., Information, Complexity and Control in Quantum Physics, in: Proceedings of the 4th International Seminar on Mathematical Theory of Dynamical Systems and Microphysics (1987), Springer-Verlag, New York), 331-336
[40] Diosi, L., Continuous quantum measurement and Ito formalism, Phys. Lett. A, 129, 419 (1988)
[41] Diosi, L., Localized solution of a simple non-linear quantum Langevin equation, Phys. Lett. A, 132, 233 (1988)
[42] Wiseman, H. M.; Milburn, G. J., Quantum theory of field-quadrature measurements, Phys. Rev. A, 47, 642-662 (1993)
[43] Wiseman, H. M.; Milburn, G. J., Quantum theory of optical feedback via homodyne detection, Phys. Rev. Lett., 70, 548-551 (1993)
[44] Maybeck, P. S., Stochastic Models, Estimation and Control (I and II) (1982), Academic Press, New York · Zbl 0546.93063
[45] Belavkin, V. P., Quantum stochastic calculus and quantum nonlinear filtering, J. Multivariate Anal., 42, 171-202 (1992) · Zbl 0762.60059
[46] Belavkin, V. P., Quantum continual measurements and a posteriori collapse on CCR, Comm. Math. Phys., 146, 611-635 (1992) · Zbl 0757.60057
[47] Belavkin, V. P., Theory of the control of observable quantum systems, Autom. Remote Control, 44, 178-188 (1983) · Zbl 0523.93067
[48] Wiseman, H. M., Quantum theory of continuous feedback, Phys. Rev. A, 49, 2133-2150 (1994)
[49] Yanagisawa, M.; Kimura, H., A control problem for Gaussian states, (Yamamoto, Y.; Hara, S., Learning, Control and Hybrid Systems. Learning, Control and Hybrid Systems, Lecture Notes in Control and Information Sciences, vol. 241 (1998), Springer-Verlag, New York), 249-313 · Zbl 0921.93037
[50] Doherty, A. C.; Jacobs, K., Feedback control of quantum systems using continuous state estimation, Phys. Rev. A, 60, 2700-2711 (1999)
[51] Wiseman, H. M.; Milburn, G. J., All-optical versus electro-optical quantum-limited feedback, Phys. Rev. A, 49, 4110-4125 (1994)
[52] Kenyon, I., The Light Fantastic: A Modern Introduction to Classical and Quantum Optics (2011) · Zbl 1232.78004
[53] Gardiner, C. W.; Collett, M. J., Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation, Phys. Rev. A, 31, 3761-3774 (1985)
[54] Gardiner, C. W.; Zoller, P., Quantum Noise (2004), Springer-Verlag, Berlin · Zbl 0998.81555
[55] Gardiner, C. W., Driving a quantum system with the output field from another driven quantum system, Phys. Rev. Lett., 70, 2269-2272 (1993)
[56] Carmichael, H. J., Quantum trajectory theory for cascaded open systems, Phys. Rev. Lett., 70, 2273-2276 (1993)
[57] Lloyd, S., Coherent quantum feedback, Phys. Rev. A, 62, Article 022108 pp. (2000)
[58] Nelson, R. J.; Weinstein, Y.; Cory, D.; Lloyd, S., Experimental demonstration of fully coherent quantum feedback, Phys. Rev. Lett., 85, 3045-3048 (2000)
[59] Jacobs, K.; Wang, X.; Wiseman, H. M., Coherent feedback that beats all measurement-based feedback protocols, New J. Phys., 16, Article 073036 pp. (2014) · Zbl 1451.81262
[60] Qi, B.; Guo, L., Is measurement-based feedback still better for quantum control systems?, Syst. Control Lett., 59, 333-339 (2010) · Zbl 1198.93035
[61] James, M. R.; Nurdin, H. I.; Petersen, I. R., \(H{}^\infty\) Control of Linear Quantum Stochastic Systems, IEEE Trans. Automat. Control, 53, 1787-1803 (2008) · Zbl 1367.93178
[62] Gough, J. E.; James, M. R., The series product and its application to quantum feedforward and feedback networks, IEEE Trans. Automat. Control, 54, 2530-2544 (2009) · Zbl 1367.81026
[63] Mabuchi, H., Nonlinear interferometry approach to photonic sequential logic, Appl. Phys. Lett., 99, Article 153103 pp. (2011)
[64] Kerckhoff, J.; Lehnert, K. W., Superconducting microwave multivibrator produced by coherent feedback, Phys. Rev. Lett., 109, Article 153602 pp. (2012)
[65] Zhang, J.; Wu, R. B.; Liu, Y.-X.; Li, C. W.; Tarn, T. J., Quantum coherent nonlinear feedbacks with applications to quantum optics on chip, IEEE Trans. Automat. Control, 57, 1997-2008 (2012)
[66] Liu, Z.-P.; Wang, H.; Zhang, J.; Liu, Y.-X.; Wu, R.-B.; Li, C.-W; Nori, F., Feedback-induced nonlinearity and superconducting on-chip quantum optics, Phys. Rev. A, 88, Article 063851 pp. (2013)
[67] Nurdin, H. I.; James, M. R.; Petersen, I. R., Coherent quantum LQG control, Automatica, 45, 1837-1846 (2009) · Zbl 1185.49037
[68] Hamerly, R.; Mabuchi, H., Advantages of coherent feedback for cooling quantum oscillators, Phys. Rev. Lett., 109, Article 173602 pp. (2012)
[69] Pechen, A.; Brif, C.; Wu, R.-B.; Chakrabarti, R.; Rabitz, H., General unifying features of controlled quantum phenomena, Phys. Rev. A, 82, 030101(R) (2010)
[70] Maruyama, K.; Nori, F.; Vedral, V., The physics of Maxwell’s demon and information, Rev. Mod. Phys., 81, 1-23 (2009) · Zbl 1205.82005
[71] Sagawa, T.; Ueda, M., Second law of thermodynamics with discrete quantum feedback control, Phys. Rev. Lett., 100, Article 080403 pp. (2008)
[72] Sagawa, T.; Ueda, M., Nonequilibrium thermodynamics of feedback control, Phys. Rev. E, 85, Article 021104 pp. (2012)
[73] Abreu, D.; Seifert, U., Thermodynamics of genuine nonequilibrium states under feedback control, Phys. Rev. Lett., 108, Article 030601 pp. (2012)
[74] Jacobs, K., Second law of thermodynamics and quantum feedback control: Maxwell’s demon with weak measurements, Phys. Rev. A, 80, Article 012322 pp. (2009)
[75] Shor, P. W., Scheme for reducing decoherence in quantum computer memory, Phys. Rev. A, 52, R2493-R2496 (1995)
[76] Steane, A. M., Multiple-particle interference and quantum error correction, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 452, 2551-2577 (1996) · Zbl 0876.94002
[77] Knill, E.; Laflamme, R., Theory of quantum error-correcting codes, Phys. Rev. A, 55, 900-911 (1997)
[78] Cirac, J. I.; Pellizzari, T.; Zoller, P., Enforcing coherent evolution in dissipative quantum dynamics, Science, 273, 1207-1210 (1996)
[79] Zurek, W. H.; Laflamme, R., Quantum logical operations on encoded qubits, Phys. Rev. Lett., 77, 4683-4686 (1996)
[80] Duan, L. M.; Guo, G. C., Preserving coherence in quantum computation by pairing quantum bits, Phys. Rev. Lett., 79, 1953-1956 (1997)
[81] Lloyd, S.; Slotine, J. J.E., Analog quantum error correction, Phys. Rev. Lett., 80, 4088-4091 (1998)
[83] Collett, M. J.; Gardiner, C. W., Squeezing of intracavity and traveling-wave light fields produced in parametric amplification, Phys. Rev. A, 30, 1386-1391 (1984)
[84] Hudson, R. I.; Parthasarathy, K. R., Quantum Ito’s formula and stochastic evolution, Comm. Math. Phys., 93, 301-323 (1984) · Zbl 0546.60058
[85] Jacobs, K., Stochastic Processes for Physicists: Understanding Noisy Systems (2010), Cambridge University Press, Cambridge · Zbl 1206.82001
[86] Jacobs, K., Quantum Measurement Theory and its Applications (2014), Cambridge University Press, Cambridge
[87] Wineland, D.; Dehmelt, H., Proposed \(10^{14} \Delta \nu < \nu\) laser fluorescence spectroscopy on \(Tl{}^+\) mono-ion oscillator, Bull. Amer. Math. Soc., 20, 637 (1975)
[88] Diedrich, F.; Bergquist, J. C.; Itano, W. M.; Wineland, D. J., Laser cooling to the zero-point energy of motion, Phys. Rev. Lett., 62, 403-406 (1989)
[89] Golnaraghi, F.; Kuo, B. C., Automatic Control Systems (2009), Wiley, New York
[90] Zhou, K.; Doyle, J.; Glover, K., Robust and Optimal Control (1995), Prentice Hall, Englewood Cliffs, New Jersey
[91] Ahn, C.; Doherty, A. C.; Landahl, A. J., Continuous quantum error correction via quantum feedback control, Phys. Rev. A, 65, Article 042301 pp. (2002)
[92] Ahn, C.; Wiseman, H. M.; Milburn, G. J., Quantum error correction for continuously detected errors, Phys. Rev. A, 67, Article 052310 pp. (2003) · Zbl 1293.81023
[93] Plenio, M. B.; Knight, P. L., The quantum-jump approach to dissipative dynamics in quantum optics, Rev. Mod. Phys., 101-144 (1998)
[94] Jacobs, K.; Steck, D. A., A straightforward introduction to continuous quantum measurement, Contemp. Phys., 47, 279-303 (2006)
[95] Mølmer, K.; Castin, Y.; Dalibard, J., Monte Carlo wave-function method in quantum optics, J. Opt. Soc. Amer. B, 10, 524-538 (1993)
[96] Gisin, N.; Percival, I. C., The quantum-state diffusion model applied to open systems, J. Phys. A: Math. Gen., 25, 5677-5691 (1992) · Zbl 0773.65100
[97] Percival, I. C., Quantum State Diffusion (1998), Cambridge University Press, Cambridge · Zbl 0946.60093
[98] Gardiner, C. W.; Parskins, A. S.; Zoller, P., Wave-function quantum stochastic differential equations and quantum-jump simulation methods, Phys. Rev. A, 46, 4363-4381 (1992)
[99] Leonhardt, U., Measuring the Quantum State of Light (2005), Cambridge University Press, Cambridge
[100] Wiseman, H. M.; Milburn, G. J., Interpretation of quantum jump and diffusion processes illustrated on the Bloch sphere, Phys. Rev. A, 47, 1652-1666 (1993)
[101] Warszawski, P.; Wiseman, H. H., Quantum trajectories for realistic photodetection: I. General formalism, J. Opt. B, 5, 1-14 (2003)
[102] Warszawski, P.; Wiseman, H. H., Quantum trajectories for realistic photodetection: II. Application and analysis, J. Opt. B, 5, 15-28 (2003)
[103] Wiseman, H. M.; Diósi, L., Complete parameterization, and invariance, of diffusive quantum trajectories for Markovian open systems, Chem. Phys., 268, 91-104 (2001)
[104] Aharonov, Y.; Albert, D. Z.; Vaidman, L., How the result of a measurement of a component of the spin of a spin-1/2 particle can turn out to be 100, Phys. Rev. Lett., 60, 1351-1354 (1988)
[105] Aharonov, Y.; Vaidman, L., Properties of a quantum system during the time interval between two measurements, Phys. Rev. A, 41, 11-20 (1990)
[106] Kofman, A. G.; Ashhab, S.; Nori, F., Noperturbative theory of weak pre- and post-selected measurements, Phys. Rep., 520, 43-133 (2012)
[107] Scott, A. J.; Milburn, G. J., Quantum nonlinear dynamics of continuously measured systems, Phys. Rev. A, 63, Article 042101 pp. (2001) · Zbl 0973.81064
[108] Gough, J.; Sobolev, A., Continuous measurement of canonical observables and limit stochastic Schrodinger equations, Phys. Rev. A, 69, Article 032107 pp. (2004)
[109] Leonhardt, U.; Paul, H., Phase measurement and Q function, Phys. Rev. A, 47, 2460(R) (1993)
[110] Bouten, L.; van Handel, R.; James, M. R., An introduction to quantum filtering, SIAM J. Control Optim., 46, 2199-2241 (2007) · Zbl 1149.93032
[111] Doherty, A. C.; Habib, S.; Jacobs, K.; Mabuchi, H.; Tan, S. M., Quantum feedback control and classical control theory, Phys. Rev. A, 62, Article 012105 pp. (2000)
[112] Steck, D. A.; Jacobs, K.; Mabuchi, H.; Bhattacharya, T.; Habib, S., Quantum feedback control of atomic motion in an optical cavity, Phys. Rev. Lett., 92, Article 223004 pp. (2004)
[113] Steck, D. A.; Jacobs, K.; Mabuchi, H.; Habib, S.; Bhattacharya, T., Feedback cooling of atomic motion in cavity QED, Phys. Rev. A, 74, Article 012322 pp. (2006)
[114] Jacobs, K.; Finn, J.; Vinjanampathy, S., Real-time feedback control of a mesoscopic superposition, Phys. Rev. A, 83, Article 041801 pp. (2011)
[115] Wang, J.; Wiseman, H. M., Feedback-stabilization of an arbitary pure state of a two-level atom, Phys. Rev. A, 64, Article 063810 pp. (2001)
[116] Hofmann, H. F.; Hess, O.; Mahler, G., Quantum control by compensation of quantum fluctuations, Opt. Exp., 2, 339-346 (1998)
[117] Hofmann, H. F.; Mahler, G.; Hess, O., Quantum control of atomic systems by homodyne detection and feedback, Phys. Rev. A, 57, 4877-4888 (1998)
[118] Wang, J.; Wiseman, H. M.; Milburn, G. J., Dynamical creation of entanglement by homodyne-mediated feedback, Phys. Rev. A, 71, Article 042309 pp. (2005)
[119] Li, J.-G.; Zou, J.; Shao, B.; Cai, J.-F., Steady atomic entanglement with different quantum feedbacks, Phys. Rev. A, 77, Article 012339 pp. (2008)
[120] Yamamoto, N., Parametrization of the feedback Hamiltonian realizing a pure steady state, Phys. Rev. A, 72, Article 024104 pp. (2005)
[121] Mancini, S.; Wang, J., Towards feedback control of entanglement, Eur. Phys. J. D, 32, 257-260 (2005)
[122] Li, Y.; Luo, B.; Guo, H., Entanglement and quantum discord dynamics of two atoms under practical feedback control, Phys. Rev. A, 84, Article 012316 pp. (2011)
[123] Carvalho, A. R.R.; Busse, M.; Brodier, O.; Viviescas, C.; Buchleitner, A., Optimal dynamical characterization of entanglement, Phys. Rev. Lett., 98, Article 190501 pp. (2007)
[124] Viviescas, C.; Guevara, I.; Carvalho, A. R.R.; Busse, M.; Buchleitner, A., Entanglement dynamics in open two-qubit systems via diffusive quantum trajectories, Phys. Rev. Lett., 105, Article 210502 pp. (2010)
[125] Carvalho, A. R.R.; Hope, J. J., Stabilizing entanglement by quantum-jump-based feedback, Phys. Rev. A, 76, 010301(R) (2007)
[126] Carvalho, A. R.R.; Reid, A. J.S.; Hope, J. J., Controlling entanglement by direct quantum feedback, Phys. Rev. A, 78, Article 012334 pp. (2008)
[127] Hou, S. C.; Huang, X. L.; Yi, X. X., Suppressing decoherence and improving entanglement by quantum-jump-based feedback control in two-level systems, Phys. Rev. A, 82, Article 012336 pp. (2010)
[128] Stevenson, R. N.; Carvalho, A. R.R.; Hope, J. J., Production of entanglement in Raman three-level systems using feedback, Eur. Phys. J. D, 61, 523-529 (2011)
[129] Wang, L. C.; Shen, J.; Yi, X. X., Effect of feedback control on the entanglement evolution, Eur. Phys. J. D, 56, 435-440 (2010)
[130] Xue, D.; Zou, J.; Li, J.-G.; Chen, W.-Y.; Shao, B., Controlling entanglement between two separated atoms by quantum-jump-based feedback, J. Phys. B: At. Mol. Opt. Phys., 43, Article 045503 pp. (2010)
[131] Song, J.; Xia, Y.; Sun, X.-D., Noise-induced quantum correlation via quantum feedback control, J. Opt. Soc. Amer. B, 29 (2012)
[132] Tombesi, P.; Vitali, D., Macroscopic coherence via quantum feedback, Phys. Rev. A, 51, 4913-4917 (1995)
[133] Goetsch, P.; Tombesi, P.; Vitali, D., Effect of feedback on the decoherence of a Schrodinger-cat state: A quantum trajectory description, Phys. Rev. A, 54, 4519-4527 (1996)
[134] Vitali, D.; Tombesi, P.; Milburn, G. J., Controlling the decoherence of a ‘meter’ via stroboscopic feedback, Phys. Rev. Lett., 79, 2442-2445 (1997)
[135] Vitali, D.; Tombesi, P.; Milburn, G. J., Quantum-state protection in cavities, Phys. Rev. A, 57 (1998)
[136] Fortunato, M.; Raimond, J. M.; Tombesi, P.; Vitali, D., Autofeedback scheme for preservation of macroscopic coherence in microwave cavities, Phys. Rev. A, 60, 1687-1697 (1999)
[137] Wiseman, H. M.; Milburn, G. J., Squeezing via feedback, Phys. Rev. A, 49, 1350-1366 (1994)
[138] Wiseman, H. M.; Milburn, G. J., Reduction in laser-intensity fluctuations by a feedback-controlled output mirror, Phys. Rev. A, 46, 2853-2858 (1992)
[139] Liebman, A.; Milburn, G. J., Quantum-noise reduction in a driven cavity with feedback, Phys. Rev. A, 47, 634-638 (1993)
[140] Tombesi, P.; Vitali, D., Physical realization of an environment with squeezed quantum fluctuations via quantum-nondemolition-mediated feedback, Phys. Rev. A, 50 (1994)
[141] Wiseman, H. M.; Taubman, M. S.; Bachor, H.-A., Feedback-enhanced squeezing in second-harmonic generation, 51, 3227-3233 (1995)
[142] Wiseman, H. M., In-loop squeezing is like real squeezing to an in-loop atom, Phys. Rev. Lett., 81, 3840-3843 (1998)
[143] Ruskov, R.; Schwab, K.; Korotkov, A. N., Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback, Phys. Rev. B, 71, Article 235407 pp. (2005)
[144] Vinante, A.; Falferi, P., Feedback-enhanced parametric squeezing of mechanical motion, Phys. Rev. Lett., 111, Article 207203 pp. (2013)
[145] Thomsen, L. K.; Mancini, S.; Wiseman, H. M., Spin squeezing via quantum feedback, Phys. Rev. A, 65, 061801(R) (2002)
[146] Stockton, J. K.; van Handel, R.; Mabuchi, H., Deterministic Dicke-state preparation with continuous measurement and control, Phys. Rev. A, 70, Article 022106 pp. (2004)
[147] Zhang, J.; Liu, Y. X.; Wu, R. B.; Li, C. W.; Tarn, T. J., Transition from weak to strong measurements by nonlinear quantum feedback control, Phys. Rev. A, 82, Article 022101 pp. (2010)
[148] Giovannetti, V.; Tombesi, P.; Vitali, D., Non-Markovian quantum feedback from homodyne measurements: The effect of a nonzero feedback delay time, Phys. Rev. A, 60 (1999)
[149] Nishio, K.; Kashima, K.; Imura, J., Effects of time delay in feedback control of linear quantum systems, Phys. Rev. A, 79, Article 062105 pp. (2009)
[150] Emary, C., Delayed feedback control in quantum transport, Phil. Trans. R. Soc. A, 371, 1999 (2013) · Zbl 1353.81067
[151] Sarovar, M.; Goan, H.-S.; Spiller, T. P.; Milburn, G. J., High-fidelity measurement and quantum feedback control in circuit QED, Phys. Rev. A, 72, Article 062327 pp. (2005)
[152] Liu, Z.; Kuang, L. L.; Hu, K.; Xu, L. T.; Wei, S. H.; Guo, L. Z.; Li, X. Q., Deterministic creation and stabilization of entanglement in circuit QED by homodyne-mediated feedback control, Phys. Rev. A, 82, Article 032335 pp. (2010)
[153] Feng, W.; Wang, P. Y.; Ding, X. M.; Xu, L. T.; Li, X. Q., Generating and stabilizing the Greenberger-Horne-Zeilinger state in circuit QED: Joint measurement, Zeno effect, and feedback, Phys. Rev. A, 83, Article 042313 pp. (2011)
[154] Wheatley, T. A.; Berry, D. W.; Yonezawa, H.; Nakane, D.; Arao, H.; Pope, D. T.; Ralph, T. C.; Wiseman, H. M.; Furusawa, A.; Huntington, E. H., Adaptive optical estimation using time-symmetric quantum smoothing, Phys. Rev. Lett., 104, Article 093601 pp. (2010)
[155] Wiseman, H. M.; Mancini, S.; Wang, J., Bayesian feedback versus Markovian feedback in a two-level atom, Phys. Rev. A, 66, Article 013807 pp. (2002)
[156] Wiseman, H. M.; Doherty, A. C., Optimal unravellings for feedback control in linear quantum systems, Phys. Rev. Lett., 94, Article 070405 pp. (2005)
[157] Yamamoto, N., Robust oberver for uncertain linear quantum systems, Phys. Rev. A, 74, Article 032107 pp. (2006)
[158] Yamamoto, N., Relation between fundamental estimation limit and stability in linear quantum systems with imperfect measurement, Phys. Rev. A, 76, Article 034102 pp. (2007)
[159] Chia, A.; Wiseman, H. M., Quantum theory of multiple-inputmultiple-output Markovian feedback with diffusive measurements, Phys. Rev. A, 84, Article 012120 pp. (2011)
[160] Chia, A.; Wiseman, H. M., Complete parametrizations of diffusive quantum monitorings, Phys. Rev. A, 84, Article 012119 pp. (2011)
[161] Goetsch, P.; Graham, R.; Haake, F., Schrodinger cat states and single runs for the damped harmonic oscillator, Phys. Rev. A, 51, 136-142 (1995)
[162] Wiseman, H. M.; Thomsen, L. K., Reducing the linewidth of an atom laser by feedback, Phys. Rev. Lett., 86, 1143-1147 (2001)
[163] Thomsen, L. K.; Wiseman, H. M., Atom-laser coherence and its control via feedback, Phys. Rev. A, 65, Article 063607 pp. (2002)
[164] Sarovar, M.; Ahn, C.; Jacobs, K.; Milburn, G. J., Practical scheme for error control using feedback, Phys. Rev. A, 69, Article 052324 pp. (2004)
[165] Chase, B. A.; Landahl, A. J.; Geremia, J. M., Efficient feedback controllers for continuous-time quantum error correction, Phys. Rev. A, 77, Article 032304 pp. (2008)
[166] Mabuchi, H., Continuous quantum error correction as classical hybrid control, New J. Phys., 11, Article 105044 pp. (2009)
[167] Keane, K.; Korotkov, A. N., Simplified quantum error detection and correlation for superconducting qubits, Phys. Rev. A, 86, Article 012333 pp. (2012)
[168] Szigeti, S. S.; Carvalho, A. R.R.; Morley, J. G.; Hush, M. R., Ignorance is bliss: general and robust cancellation of decoherence via no-knowledge quantum feedback, Phys. Rev. Lett., 113, Article 020407 pp. (2014)
[169] Biercuk, M. J.; Uys, H.; VanDevender, A. P.; Shiga, N.; Itano, W. M.; Bollinger, J. J., Optimized dynamical decoupling in a model quantum memory, Nature, 458, 996-1000 (2009)
[170] Viola, L.; Knill, E.; Lloyd, S., Dynamical decoupling of open quantum systems, Phys. Rev. Lett., 82, 2417-2421 (1999) · Zbl 1042.81524
[171] Zanardi, P., Symmetrizing evolutions, Phys. Lett. A, 258, 77-82 (1999) · Zbl 0934.81003
[172] Green, T.; Uys, H.; Biercuk, M. J., High-order noise filtering in nontrivial quantum logic gates, Phys. Rev. Lett., 109, Article 020501 pp. (2012)
[173] Ticozzi, F.; Viola, L., Single-bit feedback and quantum-dynamical decoupling, Phys. Rev. A, 74, Article 052328 pp. (2006)
[174] Zhang, J.; Wu, R.-B.; Li, C.-W.; Tarn, T.-J., Protecting coherence and entanglement by quantum feedback controls, IEEE Trans. Automat. Control, 55, 619-633 (2010) · Zbl 1368.81096
[175] Ganesan, N.; Tarn, T.-J., Decoherence control in open quantum systems via classical feedback, Phys. Rev. A, 75, Article 032323 pp. (2007)
[176] Hopkins, A.; Jacobs, K.; Habib, S.; Schwab, K., Feedback cooling of a nanomechanical resonator, Phys. Rev. B, 68, Article 235328 pp. (2003)
[177] Zhang, J.; Liu, Y.-X.; Nori, F., Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control, Phys. Rev. A, 79, Article 052102 pp. (2009)
[178] Woolley, M. J.; Doherty, A. C.; Milburn, G. J., Continuous quantum nondemolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED, Phys. Rev. B, 82, Article 094511 pp. (2010)
[179] Ruskov, R.; Korokov, A. N., Quantum feedback control of a solid-state qubit, Phys. Rev. B, 6, 041401(R) (2002)
[180] Korotkov, A. N., Quantum feedback of a double-dot qubit, Microelectron. J., 36, 253-255 (2005)
[181] Korotkov, A. N., Simple quantum feedback of a solid-state qubit, Phys. Rev. B, 71, 201305(R) (2005)
[182] Zhang, Q.; Ruskov, R.; Korotkov, A. N., Continuous quantum feedback of coherent oscillations in a solid-state qubit, Phys. Rev. B, 72, Article 245322 pp. (2005)
[183] Jordan, A. N.; Korotkov, A. N., Qubit feedback and control with kicked quantum nondemolition measurements: a quantum Bayesian analysis, Phys. Rev. B, 74, Article 085307 pp. (2006)
[184] Korotkov, A. N., Selective quantum evolution of a qubit state due to continuous measurement, Phys. Rev. B, 63, Article 115403 pp. (2001)
[185] Korotkov, A. N., Continuous quantum measurement of a double dot, Phys. Rev. B, 60, 5737-5742 (1999)
[186] Cui, W.; Lambert, N.; Ota, Y.; X.-Y. L.; Xiang, Z.-L.; You, J. Q.; Nori, F., Confidence and backaction in the quantum filter equation, Phys. Rev. A, 86, Article 052320 pp. (2012)
[187] Goan, H.-S.; Milburn, G. J.; Wiseman, H. M.; Sun, H. B., Continuous quantum measurement of two coupled quantum dots using a point contact: a quantum trajectory approach, Phys. Rev. B, 63, Article 125326 pp. (2001)
[188] Oxtoby, N. P.; Warszawski, P.; Wiseman, H. M.; Sun, H.-B.; Polkinghorne, R. E.S., Quantum trajectories for the realistic measurement of a solid-state charge qubit, Phys. Rev. B, 71, Article 165317 pp. (2005)
[189] Oxtoby, N. P.; Wiseman, H. M.; Sun, H.-B., Sensitivity and back action in charge qubit measurements by a strongly coupled single-electron transistor, Phys. Rev. B, 74, Article 045328 pp. (2006)
[190] Jin, J. S.; Li, X. Q.; Yan, Y. J., Quantum coherence control of solid-state charge qubit by means of a suboptimal feedback algorithm, Phys. Rev. B, 73, Article 233302 pp. (2006)
[191] Cui, W.; Nori, F., Feedback control of Rabi oscillations in circuit QED, Phys. Rev. A, 88, Article 063823 pp. (2013)
[192] Wilson, R. D.; Zagoskin, A. M.; Savel’ev, S.; Everitt, M. J.; Nori, F., Feedback-controlled adiabatic quantum computation, Phys. Rev. A, 86, Article 052306 pp. (2012)
[193] Riste, D.; Bultink, C. C.; Lehnert, K. W.; DiCarlo, L., Feedback control of a solid-state qubit using high-fidelity project measurement, Phys. Rev. Lett., 109, Article 240502 pp. (2012)
[194] Vijay, R.; Macklin, C.; Slichter, D. H.; Weber, S. J.; Murch, K. W.; Naik, R.; Korotkov, A. N.; Siddiqi, I., Stabilizing Rabi oscillations in a superconducting qubit using quantum feedback, Nature, 490, 77-80 (2012)
[195] Campagne-Ibarcq, P.; Flurin, E.; Roch, N.; Darson, D.; Morfin, P.; Mirrahimi, M.; Devoret, M. H.; Mallet, F.; Huard, B., Persistent control of a superconducting qubit by stroboscopic measurement feedback, Phys. Rev. X, 3, Article 021008 pp. (2013)
[196] Gustavsson, S.; Studer, M.; Leturcq, R.; Ihn, T.; Ensslin, K.; Driscoll, D. C.; Gossard, A. C., Frequency-selective single-photon detection using a double quantum dot, Phys. Rev. Lett., 99, Article 206804 pp. (2007)
[197] Ouyang, S.-H.; Lam, C.-H.; You, J. Q., Backaction of a charge detector on a double quantum dot, Phys. Rev. B, 81, Article 075301 pp. (2010)
[198] Li, Z.-Z.; Lam, C.-H.; Yu, T.; You, J. Q., Detector-induced backaction on the counting statistics of a double quantum dot, Sci. Rep., 3, 3026 (2013)
[199] van Handel, R.; Stochton, J. K.; Mabuchi, H., Feedback control of quantum state reduction, IEEE Trans. Automat. Control, 50, 768-780 (2005) · Zbl 1365.81068
[200] Altafini, C., Feedback stabilization of isospectral control systems on complex flag manifolds: application to quantum ensembles, IEEE Trans. Automat. Control, 52, 2019-2028 (2007) · Zbl 1366.93562
[201] van Handel, R.; Stockton, J. K.; Mabuchi, H., Modelling and feedback control design for quantum state preparation, J. Opt. B: Quantum Semiclass. Opt, 7, S179-S197 (2005)
[202] Qi, B.; Pan, H.; Guo, L., Further results on stabilizing control of quantum systems, IEEE Trans. Automat. Control, 58, 1349-1354 (2013) · Zbl 07671277
[203] Mirrahimi, M.; van Handel, R., Stabilizing feedback controls for quantum systems, SIAM J. Control Optim., 46, 445-467 (2007) · Zbl 1136.81342
[204] Smith, W. P.; Reiner, J. E.; Orozco, L. A.; Kuhr, S.; Wiseman, H. M., Capture and release of a conditional state of a cavity QED system by quantum feedback, Phys. Rev. Lett., 89, Article 133601 pp. (2002)
[205] Reiner, J. E.; Wiseman, H. M.; Mabuchi, H., Quantum jumps between dressed states: A proposed cavity-QED test using feedback, Phys. Rev. A, 67, Article 042106 pp. (2003)
[206] Reiner, J. E.; Smith, W. P.; Orozco, L. A.; Wiseman, H. M.; Gambetta, J., Quantum feedback in a weakly driven cavity QED system, Phys. Rev. A, 70, Article 023819 pp. (2004)
[207] Karasik, R. I.; Wiseman, H. M., How many bits does it take to track an open quantum system, Phys. Rev. Lett., 106, Article 020406 pp. (2011)
[208] Karasik, R. I.; Wiseman, H. M., Tracking an open quantum system using a finite state machine: stability analysis, Phys. Rev. A, 84, Article 052120 pp. (2011)
[209] Ma, J.; Wang, X.; Sun, C. P.; Nori, F., Quantum spin squeezing, Phys. Rep., 509, 89 (2011)
[210] Xue, F.; Liu, Y. X.; Sun, C. P.; Nori, F., Two-mode squeezed states and entangled states of two mechanical resonators, Phys. Rev. B, 76, Article 064305 pp. (2007)
[211] Zagoskin, A. M.; Il’ichev, E.; McCutcheon, M. W.; Young, J.; Nori, F., Controlled generation of squeezed states of microwave radiation in a superconducting resonant circuit, Phys. Rev. Lett., 101, Article 253602 pp. (2008)
[212] Nation, P. D.; Johansson, J. R.; Blencowe, M. P.; Nori, F., Stimulating uncertainty: amplifying the quantum vacuum with superconducting circuits, Rev. Modern Phys., 84, 1-24 (2012)
[213] Braginsky, V. B.; Vorontsov, Y. I.; Thorne, K. S., Quantum nondemolition measurements, Science, 209, 547-557 (1980)
[214] Clerk, A. A.; Marquardt, F.; Jacobs, K., Back-action evasion and squeezing of a mechanical resonator using a cavity detector, New J. Phys., 10, Article 095010 pp. (2008)
[215] Szorkovszky, A.; Doherty, A. C.; Harris, G. I.; Bowen, W. P., Mechanical squeezing via parametric amplification and weak measurement, Phys. Rev. Lett., 107, Article 213603 pp. (2011)
[216] Szorkovszky, A.; Clerk, A. A.; Doherty, A. C.; Bowen, W. P., Detuned mechanical parametric amplification as a quantum non-demolition measurement, New J. Phys., 16, Article 043023 pp. (2014)
[217] Szorkovszky, A.; Brawley, G. A.; Doherty, A. C.; Bowen, W. P., Strong thermomechanical squeezing via weak measurement, Phys. Rev. Lett., 110, Article 184301 pp. (2013)
[218] Pontin, A.; Bonaldi, M.; Borrielli, A.; Cataliotti, F. S.; Marino, F.; Prodi, G. A.; Serra, E.; Marin, F., Squeezing a thermal mechanical oscillator by stabilized parametric effect on the optical spring, Phys. Rev. Lett., 112, Article 023601 pp. (2014)
[219] Leroux, I. D.; Schleier-Smith, M. H.; Vuletić, V., Implementation of cavity squeezing of a collective atomic spin, Phys. Rev. Lett., 104, Article 073602 pp. (2010)
[220] Schleier-Smith, M. H.; Leroux, I. D.; Vuletić, V., States of an ensemble of two-Level atoms with reduced quantum uncertainty, Phys. Rev. Lett., 104, Article 073604 pp. (2010)
[221] Zhang, H.; McConnell, R.; Ćuk, S.; Lin, Q.; Schleier-Smith, M. H.; Leroux, I. D.; Vuletić, V., Collective state measurement of mesoscopic ensembles with single-atom resolution, Phys. Rev. Lett., 109, Article 133603 pp. (2012)
[222] Xia, K.; Evers, J., Ground-state cooling of a nanomechanical resonator coupled to two interacting flux qubits, Phys. Rev. B, 82, Article 184532 pp. (2010)
[223] Xia, K.; Evers, J., Ground state cooling of a nanomechanical resonator in the nonresolved regime via quantum interference, Phys. Rev. Lett., 103, Article 227203 pp. (2009)
[224] Xue, F.; Wang, Y. D.; Liu, Y. X.; Nori, F., Cooling a micromechanical beam by coupling it to a transmission line, Phys. Rev. B, 76, Article 205302 pp. (2007)
[225] Kubanek, A.; Koch, M.; Sames, C.; Ourjoumtsev, A.; Pinkse, P. W.H.; Murr, K.; Rempe, G., Photon-by-photon feedback control of a single-atom trajectory, Nature, 462, 898-901 (2009)
[226] Fischer, T.; Maunz, P.; Pinkse, P. W.H.; Puppe, T.; Rempe, G., Feedback on the motion of a single atom in an optical cavity, Phys. Rev. Lett., 88, Article 163002 pp. (2002)
[227] Arcizet, O.; Cohadon, P. F.; Briant, T.; Pinard, M.; Heidmann, A., Radiation-pressure cooling and optomechanical instability of a micromirror, Nature, 444, 71-74 (2006)
[228] Gigan, S.; Bohm, H. R.; Paternostro, M.; Blaser, F.; Langer, G.; Hertzberg, J. B.; Schwab, K. C.; D. Bauerle; Aspelmeyer, M.; Zeilinger, A., Self-cooling of a micromirror by radiation pressure, Nature, 444, 67-70 (2006)
[229] Corbitt, T.; Wipf, C.; Bodiya, T.; Ottaway, D.; Sigg, D.; Smith, N.; Whitcomb, S.; Mavalvala, N., Optical dilution and feedback cooling of a gram-scale oscillator to 6.9 mK, Phys. Rev. Lett., 99, Article 160801 pp. (2007)
[230] Cohadon, P. F.; Heidmann, A.; Pinard, M., Cooling of a mirror by radiation pressure, Phys. Rev. Lett., 83, 3174-3177 (1999)
[231] Arcizet, O.; Cohadon, P. F.; Briant, T.; Pinard, M.; Heidmann, A.; Mackowski, J. M.; Michel, C.; Pinard, L.; Francais, O.; Rousseau, L., High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor, Phys. Rev. Lett., 97, Article 133601 pp. (2006)
[232] Kleckner, D.; Bouwmeester, D., Sub-Kelvin optical cooling of a micromechanical resonator, Nature, 444, 75-78 (2006)
[233] Thompson, J. D.; Zwickl, B. M.; Jayich, A. M.; Marquardt, F.; Girvin, S. M.; Harris, J. G.E., Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane, Nature, 452, 72-75 (2008)
[234] Schliesser, A.; Rivière, R.; Anetsberger, G.; Arcizet, O.; Kippenberg, T. J., Resolved-sideband cooling of a micromechanical oscillator, Nat. Phys., 5, 415-419 (2008)
[235] Gröblacher, S.; Hertzberg, J. B.; Vanner, M. R.; Cole, G. D.; Gigan, S.; Schwab, K. C.; Aspelmeyer, M., Demonstration of an ultracold micro-optomechanical oscillator in a cryogenic cavity, Nat. Phys., 5, 485-488 (2009)
[236] Schliesser, A.; Arcizet, O.; Rivière, R.; Anetsberger, G.; Kippenberg, T. J., Resolved-sideband cooling and position measurement of a micromechanical oscillator close to the Heisenberg uncertainty limit, Nat. Phys., 5, 509-514 (2009)
[237] Gröblacher, S.; Hammerer, K.; Vanner, M. R.; Aspelmeyer, M., Observation of strong coupling between a micromechanical resonator and an optical cavity field, Nature, 460, 724-727 (2009)
[238] Anetsberger, G.; Arcizet, O.; Unterreithmeier, Q. P.; Rivière, R.; Schliesser, A.; Weig, E. M.; Kotthaus, J. P.; Kippenberg, T. J., Near-field cavity optomechanics with nanomechanical oscillators, Nat. Phys., 5, 909-914 (2009)
[239] Eichenfield, M.; Camacho, R.; Chan, J.; Vahala, K. J.; Painter, O., A picogram- and nanometre-scale photonic-crystal optomechanical cavity, Nature, 459, 550-555 (2009)
[240] Eichenfield, M.; Chan, J.; Camacho, R. M.; Vahala, K. J.; Painter, O., Optomechanical crystals, Nature, 462, 78-82 (2009)
[241] Teufel, J. D.; Li, D.; Allman, M. S.; Cicak, K.; Sirois, A. J.; Whittaker, J. D.; Simmonds, R. W., Circuit cavity electromechanics in the strong-coupling regime, Nature, 471, 204-208 (2011)
[242] Teufel, J. D.; Donner, T.; Li, D.; Harlow, J. W.; Allman, M. S.; Cicak, K.; Sirois, A. J.; Whittaker, J. D.; Lehnert, K. W.; Simmonds, R. W., Sideband cooling of micromechanical motion to the quantum ground state, Nature, 475, 359-363 (2011)
[243] Chan, J.; Alegre, T. P.M.; Safavi-Naeini, A. H.; Hill, J. T.; Krause, A.; Groeblacher, S.; Aspelmeyer, M.; Painter, O., Laser cooling of a nanomechanical oscillator into its quantum ground state, Nature, 478, 89-92 (2011)
[244] Hofer, S. G.; Vasilyev, D. V.; Aspelmeyer, M.; Hammerer, K., Time-continuous Bell measurements, Phys. Rev. Lett., 111, Article 170404 pp. (2013)
[245] Bushev, P.; Rotter, D.; Wilson, A.; Dubin, F.; Becher, C.; Eschner, J.; Blatt, R.; Steixner, V.; Rabl, P.; Zoller, P., Feedback cooling of a single trapped ion, Phys. Rev. Lett., 96, Article 043003 pp. (2006)
[246] D’Urso, B.; Odom, B.; Gabrielse, G., Feedback cooling of a one-electron oscillator, Phys. Rev. Lett., 90, Article 043001 pp. (2003)
[247] Gieseler, J.; Deutsch, B.; Quidant, R.; Novotny, L., Subkelvin parametric feedback cooling of a laser-trapped nanoparticle, Phys. Rev. Lett., 109, Article 103603 pp. (2012)
[248] Morrow, N. V.; Dutta, S. K.; Raithel, G., Feedback control of atomic motion in an optical lattice, Phys. Rev. Lett., 88, Article 093003 pp. (2002)
[249] Berglund, A. J.; Mabuchi, H., Feedback controller design for tracking a single fluorescent molecule, Appl. Phys. B, 78, 653-659 (2004)
[250] Berglund, A. J.; McHale, K.; Mabuchi, H., Feedback localization of freely diffusing fluorescent particles near the optical shot-noise limit, Opt. Lett., 32, 145-147 (2007)
[251] Berglund, A. J.; McHale, K.; Mabuchi, H., Fluctuations in close-loop fluorescent particle tracking, Opt. Express, 15, 7752-7773 (2007)
[252] Murch, K. W.; Moore, K. L.; Gupta, S.; Stamper-Kurn, D. M., Observation of quantum-measurement backaction with an ultracold atomic gas, Nature Phys., 4, 561-564 (2008)
[253] Purdy, T. P.; Brooks, D. W.C.; Botter, T.; Brahms, N.; Ma, Z.-Y.; Stamper-Kurn, D. M., Tunable cavity optomechanics with ultracold atoms, Phys. Rev. Lett., 105, Article 133602 pp. (2010)
[254] Szigeti, S. S.; Hush, M. R.; Carvalho, A. R.R.; Hope, J. J., Continuous measurement feedback control of a Bose-Einstein condensate using phase-contrast imaging, Phys. Rev. A, 80, Article 013614 pp. (2009)
[255] Szigeti, S. S.; Hush, M. R.; Carvalho, A. R.R.; Hope, J. J., Feedback control of an interacting Bose-Einstein condensate using phase-contrast imaging, Phys. Rev. A, 82, Article 043632 pp. (2010)
[256] Hush, M. R.; Szigeti, S. S.; Carvalho, A. R.R.; Hope, J. J., Controlling spontaneous-emission noise in measurement-based feedback cooling of a Bose-Einstein condensate, New J. Phys., 15, Article 113060 pp. (2013)
[257] Szigeti, S. S.; Adlong, S. J.; Hush, M. R.; Carvalho, A. R.R.; Hope, J. J., Robustness of system-filter separation for the feedback control of a quantum harmonic oscillator undergoing continuous position measurement, Phys. Rev. A, 87, Article 013626 pp. (2013)
[258] Vilensky, M. Y.; Averbukh, I. Sh.; Prior, Y., Laser cooling in a feedback-controlled optical shaker, Phys. Rev. A, 73, Article 063402 pp. (2006)
[259] Kishimoto, Y.; Koga, J. K.; Tajima, T.; Fisher, D. L., Phase space control and consequences for cooling by using a laser-undulator beat wave, Phys. Rev. E, 55, 5948-5963 (1997)
[260] Zhang, G.-C.; Shen, J.-L.; Dai, J.-H., Cooling charged particles in a Paul trap by feedback control, Phys. Rev. A, 60, 704-707 (1999)
[261] Dunningham, J. A.; Wiseman, H. M.; Walls, D. F., Manipulating the motion of a single atom in a standing wave via feedback, Phys. Rev. A, 55, 1398-1411 (1997)
[262] Mancini, S.; Tombesi, P., Atomic localization in the presence of optical feedback, Phys. Rev. A, 56, 2466-2469 (1997)
[263] Mancini, S.; Vitali, D.; Tombesi, P., Stochastic phase-space localization for a single trapped particle, Phys. Rev. A, 61, Article 053404 pp. (2000)
[264] Wilson, S. D.; Carvalho, A. R.R.; Hope, J. J.; James, M. R., Effects of measurement backaction in the stabilization of a Bose-Einstein condensate through feedback, Phys. Rev. A, 76, Article 013610 pp. (2007)
[265] Kießlich, G.; Schaller, G.; Emary, C.; Brandes, T., Charge qubit purification by an electronic feedback loop, Phys. Rev. Lett., 107, Article 050501 pp. (2011)
[266] Kießlich, G.; Emary, C.; Schaller, G.; Brandes, T., Reverse quantum state engineering using electronic feedback loops, New J. Phys., 14, Article 123036 pp. (2012) · Zbl 1448.81352
[267] Brandes, T., Feedback control of quantum transport, Phys. Rev. Lett., 105, Article 060602 pp. (2010)
[268] Poltl, C.; Emary, C.; Brandes, T., Feedback stabilization of pure states in quantum transport, Phys. Rev. B, 84, Article 085302 pp. (2011)
[269] Schneider, S.; Milburn, G. J., Entanglement in the steady state of a collective-angular-momentum (Dicke) model, Phys. Rev. A, 65, Article 042107 pp. (2002)
[270] Wootters, W. K., Entanglement of formation of an arbitrary state of two qubits, Phys. Rev. Lett., 80, 2245-2248 (1998) · Zbl 1368.81047
[271] Chia, A.; Parkins, A. S., Entangled-state cycles of atomic collective-spin states, Phys. Rev. A, 77, Article 033810 pp. (2008)
[272] Yamamoto, N.; Tsumura, K.; Hara, S., Feedback control of quantum entanglement in a two-spin system, Automatica, 43, 981-992 (2007) · Zbl 1282.93130
[273] Stevenson, R. N.; Hope, J. J.; Carvalho, A. R.R., Engineering steady states using jump-based feedback for multipartite entanglement generation, Phys. Rev. A, 84, Article 022332 pp. (2011)
[274] Song, J.; Xia, Y.; Sun, X.-D.; Song, H.-S., Dissipative preparation of multibody entanglement via quantum feedback control, Phys. Rev. A, 86, Article 034303 pp. (2012)
[275] Riste, D.; Dukalski, M.; Watson, C. A.; de Lange, G.; Tiggelman, M. J.; Blanter, Ya. M.; Lehnert, K. W.; Schouten, R. N.; DiCarlo, L., Deterministic entanglement of superconducting qubits by parity measurement and feedback, Nature, 502, 350-354 (2013)
[276] Brakhane, S.; Alt, W.; Kampschulte, T.; Martinez-Dorantes, M.; Reima, R., Bayesian feedback control of a two-atom spin-state in an atom-cavity system, Phys. Rev. Lett., 109, Article 173601 pp. (2012)
[277] Mancini, S., Markovian feedback to control continuous-variable entanglement, Phys. Rev. A, 73, 010304(R) (2006)
[278] Li, G.-X.; Tan, H.-T.; Ke, S.-S., Quantum-feedback-induced enhancement of continuous-variable entanglement in a self-phase-locked type-II nondegenerate optical parameter oscillator, Phys. Rev. A, 74, Article 012304 pp. (2006)
[279] Ke, S.-S.; Cheng, G.-P.; Zhang, L.-H.; Li, G.-X., Enhancement of entanglement in the nonlinear optical coupler by homodyne-mediated feedback, J. Phys. B: At. Mol. Opt. Phys., 40, 2827-2839 (2007)
[280] Mancini, S.; Wiseman, H. M., Optimal control of entanglement via quantum feedback, Phys. Rev. A, 75, Article 012330 pp. (2007)
[281] Genoni, M. G.; Mancini, S.; Serafini, A., Optimal feedback control of linear quantum systems in the presence of thermal noises, Phys. Rev. A, 87, Article 042333 pp. (2013)
[282] Serafini, A.; Mancini, S., Determination of maximal Gaussian entanglement achievable by feedback-controlled dynamics, Phys. Rev. Lett., 104, Article 220501 pp. (2010)
[283] Yanagisawa, M., Quantum feedback control for deterministic entangled photon generation, Phys. Rev. Lett., 97, Article 190201 pp. (2006)
[284] Yamamoto, N.; Nurdin, H. I.; James, M. R.; Petersen, I. R., Avoiding entanglement sudden death via measurement feedback control in a quantum network, Phys. Rev. A, 78, Article 042339 pp. (2008)
[285] Nurdin, H. I.; Yamamoto, N., Distributed entanglement generation between continuous-mode Gaussian fields with measurement-feedback enhancement, Phys. Rev. A, 86, Article 034303 pp. (2012)
[286] Vandenberghe, L.; Boyd, S., Semidefinite programming, SIAM Rev., 38, 49-95 (1996) · Zbl 0845.65023
[287] Brańczyk, A. M.; Mendonca, P. E.M. F.; Gilchrist, A.; Doherty, A. C.; Bartlett, S. D., Quantum control of a single qubit, Phys. Rev. A, 75, Article 012329 pp. (2007)
[288] Gillett, G. G.; Dalton, R. B.; Lanyon, B. P.; Almeida, M. P.; Barbieri, M.; Pryde, G. J.; O’Brien, J. L.; Resch, K. J.; Bartlett, S. D.; White, A. G., Experimental feedback control of quantum systems using weak measurements, Phys. Rev. Lett., 104, Article 080503 pp. (2010)
[289] Higgins, B. L.; Booth, B. M.; Doherty, A. C.; Bartlett, S. D.; Wiseman, H. M.; Pryde, G. J., Mixed state discrimination using optimal control, Phys. Rev. Lett., 103, Article 220503 pp. (2009)
[290] Giovannetti, V.; Guha, S.; Lloyd, S.; Maccone, L.; Shapiro, J. H.; Yuen, H. P., Classical capacity of the lossy bosonic channel: the exact solution, Phys. Rev. Lett., 92, 27902 (2004)
[291] Guha, S.; Habif, J. L.; Takeoka, M., Approaching Helstrom limits to optical pulse-position demodulation using single photon detection and optical feedback, J. Modern Opt., 58, 257-265 (2011)
[292] Tsujino, K.; Fukuda, D.; Fujii, G.; Inoue, S.; Fujiwara, M.; Takeoka, M.; Sasaki, M., Phys. Rev. Lett., 106, Article 250503 pp. (2011)
[293] Chen, J.; Habif, J. L.; Dutton, Z.; Lazarus, R.; Guha, S., Optical codeword demodulation with error rates below the standard quantum limit using a conditional nulling receive, Nature Photon., 6, 374-379 (2012)
[294] Becerra, F. E.; Fan, J.; Baumgartner, G.; Goldhar, J.; Kosloski, J. T.; Migdall, A., Experimental demonstration of a receiver beating the standard quantum limit for multiple nonorthogonal state discrimination, Nature Photon., 7, 147-152 (2013)
[295] Helstrom, C. W., Quantum Detection and Estimation Theory, Mathematics in Science and Engineering (1976), Academic Press, New York · Zbl 1332.81011
[296] Sanders, B. C.; Milburn, G. J., Optimal quantum measurements for phase estimation, Phys. Rev. Lett., 75, 2944-2947 (1995)
[297] Sanders, B. C.; Milburn, G. J.; Zhang, Z., Optimal quantum measurements for phase-shift estimation in optical interferometry, J. Modern Opt., 44, 1309-1320 (1997)
[298] Wiseman, H. M., Adaptive phase measurement of optical modes: going beyond the marginal Q distribution, Phys. Rev. Lett., 75, 4587-4590 (1995)
[299] Wiseman, H. M.; Killip, R. B., Adaptive single-shot phase measurements: A semiclassical approach, Phys. Rev. A, 56, 944-957 (1997)
[300] Wiseman, H. M.; Killip, R. B., Adaptive single-shot phase measurements: The full quantum theory, Phys. Rev. A, 57, 2169-2185 (1998)
[301] Ralph, T. C.; Lund, A. P.; Wiseman, H. M., Adaptive phase measurements in linear optical quantum computation, J. Opt. B: Quantum Semiclass. Opt., 7, S245-S249 (2005)
[302] Berry, D. W.; Wiseman, H. M., Phase measurements at the theoretical limit, Phys. Rev. A, 63, Article 013813 pp. (2000)
[303] Pope, D. T.; Wiseman, H. M.; Lanford, N. K., Adaptive phase estimation is more accurate than nonadaptive phase estimation for continuous beams of light, Phys. Rev. A, 70, Article 043812 pp. (2004)
[304] Berry, D. W.; Wiseman, H. M., Optimal states and almost optimal adaptive measurements for quantum interferometry, Phys. Rev. Lett., 85, 5098-5101 (2000)
[305] Berry, D. W.; Wiseman, H. M.; Breslin, J. K., Optimal input states and feedback for interferometric phase estimation, Phys. Rev. A, 63, Article 053804 pp. (2001)
[306] Berry, D. W.; Wiseman, H. M., Adaptive quantum measurements of a continuously varying phase, Phys. Rev. A, 65, Article 043803 pp. (2002)
[307] Pegg, D. T.; Barnett, S. M., Unitary phase operator in quantum mechanics, Europhys. Lett., 6, 483-487 (1988)
[308] Pegg, D. T.; Barnett, S. M., Phase properties of the quantized single-mode electromagnetic-field, Phys. Rev. A, 39, 1665-1675 (1989)
[309] Tsang, M., Time-symmetric quantum theory of smoothing, Phys. Rev. Lett., 102, Article 250403 pp. (2009)
[310] Tsang, M., Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing, Phys. Rev. A, Article 033840 pp. (2009)
[311] Tsang, M., Optimal waveform estimation for classical and quantum systems via time-symmetric smoothing. II. Applications to atomic magnetometry and Hardy’s paradox, Phys. Rev. A, 81, Article 013824 pp. (2010)
[312] Armen, M. A.; Au, J. K.; Stockton, J. K.; Doherty, A. C.; Mabuchi, H., Adaptive homodyne measurement of optical phase, Phys. Rev. Lett., 89, Article 133602 pp. (2002)
[313] Higgins, B. L.; Berry, D. W.; Bartlett, S. D.; Wiseman, H. M.; Pryde, G. J., Entanglement-free Heisenberg-limited phase estimation, Nature, 450, 393-396 (2007)
[314] Dowling, J. P., Quantum optical metrology-the lowdown on high-NooN states, Contemp. Phys., 49, 125 (2008)
[315] Xiang, G. Y.; Higgins, B. L.; Berry, D. W.; Wiseman, H. M.; Pryde, G. J., Entanglement-enhanced measurement of a completely unknown optical phase, Nature Photon., 5, 43-47 (2011)
[316] Xiang, G. Y.; Ralph, T. C.; Lund, A. P.; Walk, N.; Pryde, G. J., Heralded noiseless linear amplification and distillation of entanglement, Nature Photon., 4, 316-319 (2010)
[317] Yonezawa, H.; Nakane, D.; Wheatley, T. A.; Iwasawa, K.; Takeda, S.; Arao, H.; Ohki, K.; Tsumura, K.; Berry, D. W.; Ralph, T. C.; Wiseman, H. M.; Huntington, E. H.; Furusawa, A., Quantum-enhanced optical-phase tracking, Science, 337, 1514-1517 (2012) · Zbl 1355.81071
[318] Okamoto, R.; Iefuji, M.; Oyama, S.; Yamagata, K.; Imai, H.; Fujiwara, A.; Takeuchi, S., Experimental demonstration of adaptive quantum state estimation, Phys. Rev. Lett., 109, Article 130404 pp. (2012)
[319] Verstraete, F.; Doherty, A. C.; Mabuchi, H., Sensitivity optimization in quantum parameter estimation, Phys. Rev. A, 64, Article 032111 pp. (2001)
[320] Gambetta, J.; Wiseman, H. M., State and dynamical parameter estimation for open quantum systems, Phys. Rev. A, 64, Article 042105 pp. (2001)
[321] Warszawski, P.; Gambetta, J.; Wiseman, H. M., Dynamical parameter estimation using realistic photondetection, Phys. Rev. A, 69, Article 042104 pp. (2004)
[322] Chase, B. A.; Geremia, J. M., Single-shot parameter estimation via continuous quantum measurement, Phys. Rev. A, 79, Article 022314 pp. (2009)
[323] Ralph, J. F.; Jacobs, K.; Hill, C. D., Frequency tracking and parameter estimation for robust quantum state estimation, Phys. Rev. A, 84, Article 052119 pp. (2011)
[324] Stockton, J. K.; Geremia, J. M.; Doherty, A. C.; Mabuchi, H., Robust quantum parameter estimation: Coherent magnetometry with feedback, Phys. Rev. A, 69, Article 032109 pp. (2004)
[325] Jacobs, K., How to project qubits faster using quantum feedback, Phys. Rev. A, 67, 030301(R) (2003)
[326] Combes, J.; Jacobs, K., Rapid state reduction of quantum systems using feedback control, Phys. Rev. Lett., 96, Article 010504 pp. (2006)
[327] Wiseman, H. M.; Ralph, J. F., Reconsidering rapid qubit purification by feedback, New J. Phys., 8, 90 (2006)
[328] Hill, C.; Ralph, J., Weak measurement and rapid state reduction in entangled bipartite quantum systems, New J. Phys., 9, 151 (2007)
[329] Griffith, E. J.; Hill, C. D.; Ralph, J. F.; Wiseman, H. M.; Jacobs, K., Rapid-state purification protocols for a Cooper pair box, Phys. Rev. B, 7, Article 014511 pp. (2007)
[330] Hill, C.; Ralph, J. F., Weak measurement and control of entanglement generation, Phys. Rev. A, 77, Article 014305 pp. (2008)
[331] Wiseman, H. M.; Bouten, L., Optimality of feedback control strategies for qubit purification, Quantum Inf. Process., 7, 71-83 (2008) · Zbl 1144.81443
[332] Combes, J.; Wiseman, H. M.; Jacobs, K., Rapid measurement of quantum systems using feedback control, Phys. Rev. Lett., 100, Article 160503 pp. (2008)
[333] Combes, J.; Wiseman, H. M.; Scott, A. J., Replacing quantum feedback with open-loop control and quantum filtering, Phys. Rev. A, 80, 020301(R) (2010)
[334] Combes, J.; Wiseman, H. M.; Jacobs, K.; O’Connor, A. J., Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis, Phys. Rev. A, 82, Article 022307 pp. (2010)
[335] Combes, J.; Wiseman, H. M., Maximum information gain in weak or continuous measurements of qudits: complementarity is not enough, Phys. Rev. X, 1, Article 011012 pp. (2011)
[336] Maruyama, K.; Nori, F., Entanglement purification without controlled-NOT gates by using the natural dynamics of spin chains, Phys. Rev. A, 78, Article 022312 pp. (2008)
[337] Tanamoto, T.; Maruyama, K.; Liu, Y. X.; Hu, X.; Nori, F., Efficient purification protocols using iSWAP gates in solid-state qubits, Phys. Rev. A, 78, Article 062313 pp. (2008)
[338] Pechen, A.; Il’in, N.; Shuang, F.; Rabitz, H., Quantum control by von Neumann measurements, Phys. Rev. A, 74, Article 052102 pp. (2006)
[339] Shuang, F.; Zhou, M.; Pechen, A.; Wu, R.; Shir, O. M.; Rabitz, H., Control of quantum dynamics by optimized measurements, Phys. Rev. A, 78, Article 063422 pp. (2008)
[340] Ashhab, S.; You, J. Q.; Nori, F., The information about the state of a qubit gained by a weakly coupled detector, New J. Phys., 11, Article 083017 pp. (2009)
[341] Ashhab, S.; You, J. Q.; Nori, F., The information about the state of a charge qubit gained by a weakly coupled quantum point contact, Phys. Scr. T, 137, Article 014005 pp. (2009)
[342] Ashhab, S.; You, J . Q.; Nori, F., Weak and strong measurement of a qubit using a switching-based detector, Phys. Rev. A, 79, Article 032317 pp. (2009)
[343] Ashhab, S.; Nori, F., Control-free control: manipulating a quantum system using only a limited set of measurements, Phys. Rev. A, 82, Article 062103 pp. (2010)
[344] Wiseman, H. M., Quantum control: Squinting at quantum systems, Nature, 470, 178-179 (2011)
[345] Blok, M. S.; Bonato, C.; Markham, M. L.; Twitchen, D. J.; Dobrovitski, V. V.; Hanson, R., Manipulating a qubit through the backaction of sequential partial measurements and real-time feedback, Nat. Phys., 10, 189-193 (2014)
[346] Jacobs, K., Feedback control using only quantum back-action, New J. Phys., 12, Article 043005 pp. (2010) · Zbl 1375.81034
[347] Yanagisawa, M.; Kimura, H., Transfer function approach to quantum control-part I: dynamics of quantum feedback systems, IEEE Trans. Automat. Control, 48, 2107 (2003) · Zbl 1364.81146
[348] Yanagisawa, M.; Kimura, H., Transfer function approach to quantum control-part II: control concepts and applications, IEEE Trans. Automat. Control, 48, 2121 (2003) · Zbl 1364.81147
[349] Gough, J. E.; Gohm, R.; Yanagisawa, M., Linear quantum feedback networks, Phys. Rev. A, 78, Article 062104 pp. (2008)
[350] Gough, J. E.; James, M. R.; Nurdin, H. I., Squeezing components in linear quantum feedback networks, Phys. Rev. A, 81, Article 023804 pp. (2010)
[351] Zhang, G.; James, M. R., Direct and indirect couplings in coherent feedback control of linear quantum systems, IEEE Trans. Automat. Control, 56, 1535-1550 (2011) · Zbl 1368.81095
[352] Zhang, G.; Lee, H. W.J.; Huang, B.; Zhang, H., Coherent feedback control of linear quantum optical systems via squeezing and phase shift, SIAM J. Control Optim., 50, 2130-2150 (2012) · Zbl 1252.93111
[353] Diosi, L., Non-Markovian open quantum systems: Input-output fields, memory, and monitoring, Phys. Rev. A, 85, Article 034101 pp. (2012)
[354] Zhang, J.; Liu, Y.-X.; Wu, R.-B.; Jacobs, K.; Nori, F., Non-Markovian quantum input-output networks, Phys. Rev. A, 87, Article 032117 pp. (2013)
[355] Xue, S.-B.; Wu, R.-B.; Zhang, W.-M.; Zhang, J.; Li, C.-W.; Tarn, T.-J., Decoherence suppression via non-Markovian coherent feedback control, Phys. Rev. A, 86, Article 052304 pp. (2012)
[356] Mabuchi, H., Coherent-feedback quantum control with a dynamical compensator, Phys. Rev. A, 78, Article 032323 pp. (2008)
[357] Emary, C.; Gough, J. E., Coherent feedback control in quantum transport, Phys. Rev. B, 90, Article 205436 pp. (2014)
[358] Gough, J. E.; Wildfeuer, S., Enhancement of field squeezing using coherent feedback, Phys. Rev. A, 80, Article 042107 pp. (2009)
[359] Iida, S.; Yukawa, M.; Yonezawa, H.; Yamamoto, N.; Furusawa, A., Experimental demonstration of coherent feedback control on optical field squeezing, IEEE Trans. Automat. Control, 57, 2045-2050 (2012)
[360] Kerckhoff, J.; Nurdin, H. I.; Pavlichin, D. S.; Mabuchi, H., Designing quantum memories with embedded control: photonic circuits for autonomous quantum error correction, Phys. Rev. Lett., 105, Article 040502 pp. (2010)
[361] Kerckhoff, J.; Pavlichin, D. S.; Chalabi, H.; Mabuchi, H., Design of nanophotonic circuits for autonomous subsystem quantum error correction, New J. Phys., 13, Article 055022 pp. (2011) · Zbl 1448.81213
[362] Mabuchi, H., Cavity-QED models of switches for attojoule-scale nanophotonic logic, Phys. Rev. A, 80, Article 045802 pp. (2009)
[363] Kerckhoff, J.; Bouten, L.; Silverfarb, A.; Mabuchi, H., Physical model of continuous two-qubit parity measurement in a cavity-QED network, Phys. Rev. A, 79, Article 024305 pp. (2009)
[364] Marquardt, F.; Chen, J. P.; Clerk, A. A.; Girvin, S. M., Quantum theory of cavity-assisted sideband cooling of mechanical motion, Phys. Rev. Lett., 99, Article 093902 pp. (2007)
[365] Wilson-Rae, I.; Nooshi, N.; Zwerger, W.; Kippenberg, T. J., Theory of ground state cooling of a mechanical oscillator using dynamical backaction, Phys. Rev. Lett., 99, Article 093901 pp. (2007)
[366] Tian, L., Ground state cooling of a nanomechanical resonator via parametric linear coupling, Phys. Rev. B, 79, Article 193407 pp. (2009)
[367] Yang, N.; Zhang, J.; Wang, H.; Liu, Y. X.; Wu, R. B.; Liu, L. Q.; Li, C. W.; Nori, F., Noise suppression of on-chip mechanical resonators by chaotic coherent feedback, Phys. Rev. A, 92, Article 033812 pp. (2015)
[368] Wang, X. T.; Vinjanampathy, S.; Strauch, F. W.; Jacobs, K., Ultraefficient cooling of resonators: beating sideband cooling with quantum control, Phys. Rev. Lett., 107, Article 177204 pp. (2011)
[369] Kerckhoff, J.; Andrews, R. W.; Ku, H. S.; Kindel, W. F.; Cicak, K.; Simmonds, R. W.; Lehnert, K. W., Tunable coupling to a mechanical oscillator circuit using a coherent feedback network, Phys. Rev. X, 3, Article 021013 pp. (2013)
[370] Jacobs, K.; Nurdin, H.; Strauch, F. W.; James, M., Comparing resolved-sideband cooling and measurement-based feedback cooling on an equal footing: analytical results in the regime of ground-state cooling, Phys. Rev. A, 91, 043812 (2015)
[371] Yanagisawa, M., Non-Gaussian state generation from linear elements via feedback, Phys. Rev. Lett., 103, Article 203601 pp. (2009)
[372] Yanik, M. F.; Fan, S.; Soljacic, M., High-contrast all-optical bistable switching in photonic crystal microcavities, Appl. Phys. Lett., 83, 2739-2741 (2003)
[373] Yang, X.; Husko, C.; Wong, C. W.; Yu, M.; Kwong, D. L., Observation of femtojoule optical bistability involving Fano resonances in high-Q/Vm silicon photonic crystal nanocavities, Appl. Phys. Lett., 91, Article 051113 pp. (2007)
[374] Nozaki, K.; Tanabe, T.; Shinya, A.; Matsuo, S.; Sato, T.; Taniyama, H.; Notomi, M., Sub-femtojoule all-optical switching using a photonic-crystal nanocavity, Nature Photon., 4 (2010)
[375] Kumar, R.; Liu, L.; Roelkens, G.; Geluk, E.-J.; de Vries, T.; Karouta, F.; Regreny, P.; Thourhout, D. Van; Baets, R.; Morthier, G., 10-GHz all-optical gate based on a IIIcv/SOI microdisk, IEEE Photon. Technol. Lett., 22, 981-983 (2010)
[376] Armen, M.; Mabuchi, H., Low-lying bifurcations in cavity quantum electrodynamics, Phys. Rev. A, 73, Article 063801 pp. (2006)
[377] Armen, M.; Miller, A. E.; Mabuchi, H., Spontaneous dressed-state polarization in the strong driving regime of cavity QED, Phys. Rev. Lett., 103, Article 173601 pp. (2009)
[378] Mabuchi, H., Coherent-feedback control strategy to suppress spontaneous switching in ultralow power optical bistability, Appl. Phys. Lett., 98, Article 193109 pp. (2011)
[379] Zhou, Z.; Liu, C. J.; Fang, Y. M.; Zhou, J.; Glasser, R. T.; Chen, L. Q.; Jing, J. T.; Zhang, W. P., Optical logic gates using coherent feedback, Appl. Phys. Lett., 101, Article 191113 pp. (2012)
[380] Yan, Z. H.; Jia, X. J.; Xie, C. D.; Peng, K. C., Coherent feedback control of multipartite quantum entanglement for optical fields, Phys. Rev. A, 84, Article 062304 pp. (2011)
[381] van Loock, P.; Furusawa, A., Detecting genuine multipartite continuous-variable entanglement, Phys. Rev. A, 67, Article 052315 pp. (2003)
[382] Judson, R. S.; Rabitz, H., Teaching lasers to control molecules, Phys. Rev. Lett., 68, 1500-1503 (1992)
[383] Bartels, R.; Backus, S.; Zeek, E.; Misoguti, L.; Vdovin, G.; Christov, I. P.; Murnane, M. M.; Kapteyn, H. C., Shaped-pulse optimization of coherent emission of high-harmonic soft X-rays, Nature, 406, 164-166 (2000)
[384] Rabitz, H. A.; Hsieh, M. M.; Rosenthal, C. M., Quantum optimally controlled transition landscapes, Science, 303, 1998-2001 (2004)
[385] Metzger, C. H.; Karrai, K., Cavity cooling of a microlever, Nature, 432, 1002-1005 (2004)
[386] Liberato, S. De; Lambert, N.; Nori, F., Quantum noise in photothermal cooling, Phys. Rev. A, 83, Article 033809 pp. (2011)
[387] Greilich, A.; Shabaev, A.; Yakovlev, D. R.; Efros, Al. L.; Yugova, I. A.; Reuter, D.; Wieck, A. D.; Bayer, M., Nuclei-induced frequency focusing of electron-spin coherence, Nature, 317, 1896-1899 (2007)
[388] Carter, S. G.; Shavaev, A.; Economou, S. E.; Kennedy, T. A.; Bracker, A. S.; Reinecke, T. L., Directing nuclear spin flips in InAs quantum dots using detuned optical pulse trains, Phys. Rev. Lett., 102, Article 167403 pp. (2009)
[389] Xu, X. D.; Yao, W.; Sun, B.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J., Optically controlled locking of the nuclear field via coherent dark-state spectroscopy, Nature, 459, 1105-1109 (2009)
[390] Latta, C.; Hogele, A.; Zhao, Y.; Vamivakas, A. N.; Maletinsky, P.; Kroner, M.; Dreiser, J.; Carusotto, I.; Badolato, A.; Schuh, D.; Wegscheider, W.; Atature, M.; Imamoglu, A., Confluence of resonant laser excitation and bidirectional quantum-dot nuclear-spin polarization, Nat. Phys., 5, 758-763 (2009)
[391] Greenberg, Ya. S.; Il’ichev, E.; Nori, F., Cooling a magnetic resonance force microscope via the dynamical back action of nuclear spins, Phys. Rev. B, 80, Article 214423 pp. (2009)
[392] Ladd, T. D.; Press, D.; Greve, K. De; McMahon, P. L.; Friess, B.; Schneider, C.; Kamp, M.; Hofling, S.; Forchel, A.; Yamamoto, Y., Pulsed nuclear pumping and spin diffusion in a single charged quantum dot, Phys. Rev. Lett., 105, Article 107401 pp. (2010)
[393] Sun, B.; Chow, C. M.E.; Steel, D. G.; Bracker, A. S.; Gammon, D.; Sham, L. J., Persistent narrowing of nuclear-spin fluctuations in InAs quantum dots using laser excitation, Phys. Rev. Lett., 108, Article 187401 pp. (2012)
[394] Reilly, D. J.; Taylor, J. M.; Petta, J. R.; Marcus, C. M.; Hanson, M. P.; Gossard, A. C., Suppressing spin qubit dephasing by nuclear state preparation, Science, 321, 817-821 (2008)
[395] Vink, I. T.; Nowack, K. C.; Koppens, F. H.L.; Danon, J.; Nazarov, Y. V., Locking electron spins into magnetic resonance by electron-nuclear feedback, Nat. Phys., 5, 764-768 (2009)
[396] Bluhm, H.; Foletti, S.; Mahalu, D.; Umansky, V.; Yacoby, A., Enhancing the coherence of a spin qubit by operating it as a feedback loop that controls its nuclear spin bath, Phys. Rev. Lett., 105, Article 216803 pp. (2010)
[397] Barthel, C.; Medford, J.; Bluhm, H.; Yacoby, A.; Marcus, C. M.; Hanson, M. P.; Gossard, A. C., Relaxation and readout visibility of a singlet-triplet qubit in an Overhauser field gradient, Phys. Rev. B, 85, Article 035306 pp. (2012)
[398] Yao, W.; Luo, Y., Feedback control of nuclear hyperfine fields in a double quantum dot, Europhys. Lett., 92, 17008 (2010)
[399] Caves, C. M.; Drummond, P. D., Quantum limits on bosonic communication rates, Rev. Modern Phys., 66, 481 (1994)
[400] Okamoto, R.; Hofmann, H. F.; Takeuchi, S.; Sasaki, K., Demonstration of an optical quantum controlled-NOT gate without path interference, Phys. Rev. Lett., 95, Article 210506 pp. (2005)
[401] Kiesel, N.; Schmid, C.; Weber, U.; Ursin, R.; Weinfurter, H., Linear optics controlled-phase gate made simple, Phys. Rev. Lett., 95, Article 210505 pp. (2005)
[402] Langford, N. K.; Weinhold, T. J.; Prevedel, R.; Resch, K. J.; Gilchrist, A.; O’Brien, J. L.; Pryde, G. J.; White, A. G., Demonstration of a simple entangling optical gate and its use in Bell-state analysis, Phys. Rev. Lett., 95, Article 210504 pp. (2005)
[403] Castellanos-Beltran, M. A.; Lehnert, K. W., Widely tunable parametric amplifier based on a superconducting quantum interference device array resonator, Appl. Phys. Lett., 91, Article 083509 pp. (2007)
[404] Yamamoto, T.; Inomata, K.; Watanabe, M.; Matsuba, K.; Miyazaki, T.; Oliver, W. D.; Nakamura, Y.; Tsai, J. S., Flux-driven Josephson parametric amplifier, Appl. Phys. Lett., 93, Article 042510 pp. (2008)
[405] Bergeal, N.; Vijay, R.; Manucharyan, V. E.; Siddiqi, I.; Schoelkopf, R. J.; Girvin, S. M.; Devoret, M. H., Analog information processing at the quantum limit with a Josephson ring modulator, Nat. Phys., 6, 296-302 (2010)
[406] Savelev, S.; Zagoskin, A. M.; Rakhmanov, A. L.; Omelyanchouk, A. N.; Washington, Z.; Nori, F., Two-qubit parametric amplifier: Large amplification of weak signals, Phys. Rev. A, 85, Article 013811 pp. (2012)
[407] Weber, S. J.; Chantasri, A.; Dressel, J.; Jordan, A. N.; Murch, K. W.; Siddiqi, I., Mapping the optimal route between two quantum states, Nature, 511, 570-573 (2014)
[408] You, J. Q.; Hu, X. D.; Ashhab, S.; Nori, F., Low-decoherence flux qubit, Phys. Rev. B, 75, Article 140515 pp. (2007)
[409] Koch, J.; Yu, T. M.; Gambetta, J.; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Charge-insensitive qubit design derived from the Cooper pair box, Phys. Rev. A, 76, Article 042319 pp. (2007)
[410] Caves, C. M., Quantum limits on noise in linear amplifiers, Phys. Rev. D, 26, 1817-1839 (1982)
[411] Clerk, A. A.; Devoret, M. H.; Girvin, S. M.; Marquardt, F.; Schoelkopf, R. J., Introduction to quantum noise, measurement, and amplification, Rev. Modern Phys., 82, 1155-1208 (2010) · Zbl 1205.81001
[412] Castellanos-Beltran, M. A.; Irwin, K. D.; Hilton, G. C.; Vale, L. R.; Lehnert, K. W., Amplification and squeezing of quantum noise with a tunable Josephson metamaterial, Nat. Phys., 4, 928-931 (2008)
[413] Shankar, S.; Hatridge, M.; Leghtas, Z.; Sliwa, K. M.; Narla, A.; Vool, U.; Girvin, S. M.; Frunzio, L.; Mirrahimi, M.; Devoret, M. H., Autonomously stabilized entanglement between two superconducting quantum bits, Nature, 504, 419-422 (2013)
[414] Murch, K. W.; Vool, U.; Zhou, D.; Weber, S. J.; Girvin, S. M.; Siddiqi, I., Cavity-assisted quantum bath engineering, Phys. Rev. Lett., 109, Article 183602 pp. (2012)
[415] Geerlings, K.; Leghtas, Z.; Pop, I. M.; Shankar, S.; Frunzio, L.; Schoelkopf, R. J.; Mirrahimi, M.; Devoret, M. H., Demonstrating a driven reset protocol for a superconducting qubit, Phys. Rev. Lett., 110, Article 120501 pp. (2013)
[416] Poggio, M.; Degen, C. L.; Mamin, H. J.; Rugar, D., Feedback Cooling of a Cantilever’s Fundamental Mode below 5 mK, Phys. Rev. Lett., 99, Article 017201 pp. (2007)
[417] Gavartin, E.; Verlot, P.; Kippenberg, T. J., A hybrid on-chip optomechanical transducer for ultrasensitive force measurements, Nature Nanotechnol., 7, 509-514 (2012)
[418] Monifi, F.; Zhang, J.; Ozdemir, S. K.; Peng, B.; Liu, Y.-X.; Bo, F.; Nori, F.; Yang, L., Optomechanically induced stochastic resonance and chaos transfer between optical fields, Nature Photon., 10, 399-405 (2016)
[419] X. Y.L.; Wu, Y.; Johansson, J. R.; Jing, H.; Zhang, J.; Nori, F., Squeezed optomechanics with phase-matched amplification and dissipation, Phys. Rev. Lett., 114, Article 093602 pp. (2015)
[420] Jing, H.; Ozdemir, S. K.; Geng, Z.; Zhang, J.; X. Y.L.; Peng, B.; Yang, L.; Nori, F., Optomechanically-Induced Transparency in parity-time-symmetric microresonators, Sci. Rep., 5, 9663 (2015)
[421] Poot, M.; Etaki, S.; Yamaguchi, H.; van der Zant, H. S.J., Discrete-time quadrature feedback cooling of a radio-frequency mechanical resonator, Appl. Phys. Lett., 99, Article 013113 pp. (2011)
[422] Vinante, A.; Bonaldi, M.; Marin, F.; Zendri, J.-P., Dissipative feedback does not improve the optimal resolution of incoherent force detection, Nature Nanotechnol., 8, 470 (2013)
[423] Harris, G. I.; McAuslan, D. L.; Stace, T. M.; Doherty, A. C.; Bowen, W. P., Minimum requirements for feedback enhanced force sensing, Phys. Rev. Lett., 111, Article 103603 pp. (2013)
[424] Pontin, A.; Bonaldi, M.; Borrielli, A.; Cataliotti, F. S.; Marino, F.; Prodi, G. A.; Serra, E.; Marin, F., Detection of weak stochastic forces in a parametrically stabilized micro-optomechanical system, Phys. Rev. A, 89, Article 023848 pp. (2014)
[425] Wilson, D. J.; Sudhir, V.; Piro, N.; Schilling, R.; Ghadimi, A.; Kippenberg, T. J., Measurement-based control of a mechanical resonator at its thermal decoherence rate, Nature, 524, 325-329 (2015)
[426] Sudhir, V.; Wilson, D. J.; Schilling, R.; Schütz, H.; Fedorov, S. A.; Ghadimi, A. H.; Nunnenkamp, A.; Kippenberg, T. J., Appearance and disappearance of quantum correlations in measurement-based feedback control of a mechanical oscillator, Phys. Rev. X, 7, 011001 (2017)
[427] Yamamoto, Y.; Imoto, N.; Machida, S., Amplitude squeezing in a semiconductor laser using quantum nondemolition measurement and negative feedback, Phys. Rev. A, 33, 3243-3261 (1986)
[428] Haus, H. A.; Yamamoto, Y., Theory of feedback-generated squeezed states, Phys. Rev. A, 34, 270-292 (1986)
[429] Shapiro, J. H.; Saplakoglu, G.; Ho, S.-T.; Kumar, P.; Saleh, B. E.A.; Teich, M. C., Theory of light detection in the presence of feedback, J. Opt. Soc. Amer. B, 4, 1604-1620 (1987)
[430] Sayrin, C.; Dotsenko, I.; Zhou, X. X.; Peaudecerf, B.; Rybarczyk, T.; Gleyzes, S.; Rouchon, P.; Mirrahimi, M.; Amini, H.; Brune, M.; Raimond, J.-M.; Haroche, S., Real-time quantum feedback prepares and stabilizes photon number states, Nature, 477, 73-77 (2011)
[431] Zhou, X.; Dotsenko, I.; Peaudecerf, B.; Rybarczyk, T.; Sayrin, C.; Gleyzes, S., Field locked to a Fock state by quantum feedback with single photon corretions, Phys. Rev. Lett., 108, Article 243602 pp. (2012)
[432] Vanderbruggen, T.; Kohlhass, R.; Bertoldi, A.; Bernon, S.; Aspect, A.; Landragin, A.; Bouyer, P., Feedback control of trapped coherent atomic ensembles, Phys. Rev. Lett., 110, Article 210503 pp. (2013)
[433] Inoue, R.; Tanada, S. I.R.; Namiki, R.; Sagawa, T.; Takahashi, Y., Unconditional quantum-noise suppression via measurement-based quantum feedback, Phys. Rev. Lett., 110, Article 163602 pp. (2013)
[434] Wang, X. T.; Vinjanampathy, S.; Strauch, F. W.; Jacobs, K., Absolute dynamical limit to cooling weakly coupled quantum systems, Phys. Rev. Lett., 110, Article 157207 pp. (2013)
[435] Prior, J.; Chin, A. W.; Huelga, S. F.; Plenio, M. B., Efficient simulation of strong system-environment interactions, Phys. Rev. Lett., 105, Article 050404 pp. (2010)
[436] Ishizaki, A.; Tanimura, Y., Quantum dynamics of system strongly coupled to low-temperature colored noise bath: reduced hierarchy equations approach, J. Phys. Soc. Japan, 74, 3131-3134 (2005) · Zbl 1089.82014
[437] Bulla, R.; Tong, N.-H.; Vojta, M., Numerical renormalization group for bosonic systems and application to the subohmic spin-boson model, Phys. Rev. Lett., 91, Article 170601 pp. (2003)
[438] Thorwart, M.; Reimann, P.; Jung, P.; Fox, R. F., Quantum hysteresis and resonant tunneling in bistable systems, Chem. Phys., 235, 61-80 (1998)
[439] Albash, T.; Boixo, S.; Lidar, D. A.; Zanardi, P., Quantum adiabatic Markovian master equations, New J. Phys., 14, Article 123016 pp. (2012) · Zbl 1448.81389
[440] You, J. Q.; Nori, F., Superconducting circuits and quantum information, Phys. Today, 58, 42-47 (2005)
[441] You, J. Q.; Nori, F., Atomic physics and quantum optics using superconducting circuits, Nature, 474, 589-597 (2011)
[442] Xiang, Z.-L.; Ashhab, S.; You, J. Q.; Nori, F., Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems, Rev. Modern Phys., 85, 623-653 (2013)
[443] Vahala, K. J., Optical microcavities, Nature, 424, 839-846 (2003)
[444] Kippenberg, T. J.; Vahala, K. J., Cavity optomechanics: back-action at the mesoscale, Science, 321, 1172-1176 (2008)
[445] He, L.; Ozdemir, S. K.; Yang, L., Whispering gallery microcavity lasers, Laser Photonics Rev., 7, 60-82 (2013)
[446] Peng, B.; Ozdemir, S. K.; Lei, F. C.; Monifi, F.; Gianfreda, M.; Long, G. L.; Fan, S. H.; Nori, F.; Bender, C. M.; Yang, L., Parity-time-symmetric whispering-gallery microcavities, Nat. Phys., 10, 394-398 (2014)
[447] Jing, H.; Ozdemir, S. K.; X.-Y. L.; Zhang, J.; Yang, L.; Nori, F., PT-symmetric phonon laser, Phys. Rev. Lett., 113, Article 053604 pp. (2014)
[448] Liu, Z.-P.; Zhang, J.; Ozdemir, S. K.; Peng, B.; Jing, H.; Lü, X.-Y.; Li, C.-W.; Yang, L.; Nori, F.; Liu, Y.-X., Metrology with PT-symmetric cavities: enhanced sensitivity near the PT-phase transition, Phys. Rev. Lett., 117, Article 110802 pp. (2016)
[449] Jacobs, K.; Tittonen, I.; Wiseman, H. M.; Schiller, S., Quantum noise in the position measurement of a cavity mirror undergoing Brownian motion, Phys. Rev. A, 60, 538 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.