zbMATH — the first resource for mathematics

Newly identified principle for aerodynamic heating in hypersonic flows. (English) Zbl 1415.76288
Summary: Instability evolution in a transitional hypersonic boundary layer and its effects on aerodynamic heating are investigated over a 260 mm long flared cone. Experiments are conducted in a Mach 6 wind tunnel using Rayleigh-scattering flow visualization, fast-response pressure sensors, fluorescent temperature-sensitive paint (TSP) and particle image velocimetry (PIV). Calculations are also performed based on both the parabolized stability equations (PSE) and direct numerical simulations (DNS). Four unit Reynolds numbers are studied, 5.4, 7.6, 9.7 and \(11.7\times 10^6\text{m}^{-1}\). It is found that there exist two peaks of surface-temperature rise along the streamwise direction of the model. The first one (denoted as HS) is at the region where the second-mode instability reaches its maximum value. The second one (denoted as HT) is at the region where the transition is completed. Increasing the unit Reynolds number promotes the second-mode dissipation but increases the strength of local aerodynamic heating at HS. Furthermore, the heat generation rates induced by the dilatation and shear processes (respectively denoted as \(w_\theta\) and \(w_\omega\)) were investigated. The former item includes both the pressure work \(w_{\theta1}\) and dilatational viscous dissipation \(w_{\theta2}\). The aerodynamic heating in HS mainly arose from the high-frequency compression and expansion of fluid accompanying the second mode. The dilatation heating, especially \(w_{\theta1}\), was more than five times its shear counterpart. In a limited region, the underestimated \(w_{\theta2}\) was also larger than \(w_\omega\). As the second-mode waves decay downstream, the low-frequency waves continue to grow, with the consequent shear-induced heating increasing. The latter brings about a second, weaker growth of surface-temperature HT. A theoretical analysis is provided to interpret the temperature distribution resulting from the aerodynamic heating.

76F06 Transition to turbulence
76K05 Hypersonic flows
76N20 Boundary-layer theory for compressible fluids and gas dynamics
Full Text: DOI
[1] Adrian, R. J., Particle-imaging techniques for experimental fluid mechanics, Annu. Rev. Fluid Mech., 23, 261-304, (1991)
[2] Auvity, B.; Etz, M. R.; Smits, A. J., Effects of transverse helium injection on hypersonic boundary layers, Phys. Fluids, 13, 3025-3032, (2001) · Zbl 1184.76039
[3] Avallone, F.; Ye, Q.; Schrijer, F. F. J.; Scarano, F.; Cardone, G., Tomographic PIV investigation of roughness-induced transition in a hypersonic boundary layer, Exp. Fluids, 55, 1852, (2014)
[4] Berridge, D. C.; Chou, A.; Ward, C. A. C.; Steen, L. E.; Gilbert, P. L.; Juliano, T. J.; Schneider, S. P.; Gronvall, J. E.
[5] Berry, S. A.; Horvath, T. J.; Greene, F. A.; Kinder, G. R.; Wang, K. C.
[6] Bountin, D. A.; Shiplyuk, A. N.; Sidorenko, A. A.; Fasel, H. F.; Saric, W. S., Experimental investigations of disturbance development in the hypersonic boundary layer on a conical model, Laminar-Turbulent Transition, 475-480, (2000), Springer
[7] Brostmeyer, J. D.; Nagamatsu, H. T.
[8] Casper, K. M.; Beresh, S. J.; Schneider, S. P., Pressure fuctuations beneath instability wavepackets and turbulent spots in a hypersonic boundary layer, J. Fluid Mech., 756, 1058-1091, (2014)
[9] Chang, C.-L.; Malik, M. R., Oblique-mode breakdown and secondary instability in supersonic boundary layers, J. Fluid Mech., 273, 323-360, (1994) · Zbl 0814.76040
[10] Chen, X.; Zhu, Y. D.; Lee, C. B., Interactions between second mode and low-frequency waves in a hypersonic boundary layer, J. Fluid Mech., 820, 693-735, (2017) · Zbl 1383.76315
[11] Chou, A.; Ward, C. A. C.; Letterman, L. E.; Luersen, R. P. K.; Borg, M. P.; Schneider, S. P.
[12] Chynoweth, B. C.; Ward, C. A. C.; Henderson, R. O.; Moraru, C. G.; Greenwood, R. T.; Abney, A. D.; Schneider, S. P.
[13] Emanuel, G., Effect of bulk viscosity on a hypersonic boundary layer, Phys. Fluids A, 4, 491-495, (1992) · Zbl 0748.76067
[14] Fedorov, A. V., Transition and stability of high-speed boundary layers, Annu. Rev. Fluid Mech., 43, 79-95, (2011) · Zbl 1299.76054
[15] Franko, K. J.; Lele, S. K., Breakdown mechanisms and heat transfer overshoot in hypersonic zero pressure gradient boundary layers, J. Fluid Mech., 730, 491-532, (2013) · Zbl 1291.76192
[16] Fujii, K., Experiment of the two-dimensional roughness effect on hypersonic boundary-layer transition, J. Spacecr. Rockets, 43, 4, 731-738, (2006)
[17] Gad-El-Hak, M., Questions in fluid mechanics: Stokes’ hypothesis for a Newtonian, isotropic fluid, J. Fluids Engng, 117, 3-5, (1995)
[18] Greene, F. A.; Hamilton, H. H.
[19] Hofferth, J. W.; Humble, R. A.; Floryan, D. C.; Saric, W. S.
[20] Hopkins, E. J.; Inouye, M., An evaluation of theories for predicting turbulent skin friction and heat transfer on flat plates at supersonic and hypersonic Mach numbers, AIAA J., 9, 993-1003, (1972)
[21] Horvath, T. J.; Berry, S. A.; Hollis, B. R.; Chang, C.-L.; Singer, B. A.
[22] Landau, L. D.; Lifshitz, E. M., Fluid Mechanics, (1959), Pergamon
[23] Laurence, S. J.; Wagner, A.; Hannemann, K., Time-resolved visualization of instability waves in a hypersonic boundary layer, AIAA J., 50, 1, 243-246, (2012)
[24] Laurence, S. J.; Wagner, A.; Hannemann, K., Experimental study of second-mode instability growth and breakdown in a hypersonic boundary layer using high-speed schlieren visualization, J. Fluid Mech., 797, 471-503, (2016)
[25] Lee, C. B.; Wu, J. Z., Transition in wall-bounded flows, Appl. Mech. Rev., 61, (2008) · Zbl 1146.76601
[26] Lele, S. K., Compressiblity effects on turbulence, Annu. Rev. Fluid Mech., 26, 211-254, (1994) · Zbl 0802.76032
[27] Li, F.; Malik, M. R., On the nature of PSE approximation, Theor. Comput. Fluid Dyn., 8, 253-273, (1996) · Zbl 0947.76022
[28] Li, X.; Fu, D.; Ma, Y., Direct numerical simulation of hypersonic boundary-layer transition over a blunt cone, AIAA J., 46, 11, 2899-2913, (2008)
[29] Liu, T.; Sullivan, J. P., Pressure and Temperature Sensitive Paints, (2005), Springer
[30] Mack, L. M.
[31] Mack, L. M., On the inviscid acoustic-mode instability of supersonic shear flows. Part 1. Two-dimensional waves, Theor. Comput. Fluid Dyn., 2, 97-123, (1990) · Zbl 0722.76074
[32] Malik, M. R.; Spall, R. E., On the stability of compressible flow past axisymmetric bodies, J. Fluid Mech., 228, 443-463, (1991) · Zbl 0723.76043
[33] Mcginley, C. B.; Berry, S. A.; Kinder, G. R.; Barnwell, M.; Wang, K. C.; Kirk, B. S.
[34] Moraitis, C. S.; Riethmuller, M. L., Particle image displacement velocimetry applied in high speed flows, Fourth International Symposium on Application of Laser Anemometry to Fluid Dynamics, Lisbon, Portugal, (1988)
[35] Morkovin, M. V.
[36] Pruett, C. D.; Chang, C.-L., Direct numerical simulation of hypersonic boundary-layer flow on a flared cone, Theor. Comput. Fluid Dyn., 11, 40-67, (1998) · Zbl 0906.76033
[37] Sahoo, D.; Papageorge, M.; Smits, A. J.
[38] Scarano, F.; Riethmuller, M. L.; Scarano, F., PIV image analysis for compressible turbulent flows, Advanced Measurement Techniques for Supersonic Flows, (2005), Von Karman Institute · Zbl 1149.76531
[39] Schneider, S. P.
[40] Schreyer, A.; Sahoo, D.; Smits, A. J.
[41] Schrijer, F. F. J.; Scarano, F.; Van Oudheusden, B. W., Application of PIV in a Mach 7 double-ramp flow, Exp. Fluids, 41, 353-363, (2006)
[42] Sivasubramanian, J.; Fasel, H. F., Direct numerical simulation of transition in a sharp cone boundary layer at Mach 6: fundamental breakdown, J. Fluid Mech., 768, 175-218, (2015)
[43] Sivolella, D., To Orbit and Back Again: How the Space Shuttle Flew in Space, (2014), Springer
[44] Smits, A. J.; Lim, T. T., Flow Visualization: Techniques and Examples, (2000), Imperial College Press
[45] Stetson, K. F.; Kimmel, R. L.
[46] Stetson, K. F.; Thompson, E. R.; Donaldson, J. C.; Siler, L. G.
[47] Sun, B. H.; Oran, E. S., New principle for aerodynamic heating, Natl Sci. Rev, (2018)
[48] Tang, Q.
[49] Wadhams, T. P.; Mundy, E.; Maclean, M. G.; Holden, M. S., Ground test studies of the HIFiRE-1 transition experiment. Part 1. Experimental results, J. Spacecr. Rockets, 45, 6, 1134-1148, (2008)
[50] Williams, O. J.; Smits, A. J., Application of PIV to the measurement of hypersonic turbulence, Sixteenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, (2012)
[51] Wolverton, M., Second-mode waves produce hypersonic boundary layer heating, AIP Scilight, (2018)
[52] Wu, J. Z.; Ma, H. Y.; Zhou, M. D., Vorticity and Vortex Dynamics, (2006), Springer
[53] Zhang, C. H.
[54] Zhang, C. H.; Tang, Q.; Lee, C. B., Hypersonic boundary-layer transition on a flared cone, Acta Mech. Sin., 29, 48-53, (2013)
[55] Zhang, C. H.; Zhu, Y. D.; Chen, X.; Yuan, H. J.; Wu, J. Z.; Chen, S. Y.; Lee, C. B.; Gad-El-Hak, M., Transition in hypersonic boundary layers, AIP Adv., 5, (2015)
[56] Zhu, Y. D.; Chen, X.; Wu, J. Z.; Chen, S. Y.; Lee, C. B.; Gad-El-Hak, M., Aerodynamic heating in transitional hypersonic boundary layers: role of second-mode instability, Phys. Fluids, 30, (2018)
[57] Zhu, Y. D.; Yuan, H. J.; Zhang, C. H.; Lee, C. B., Image-preprocessing method for near-wall particle image velocimetry (PIV) image interrogation with very large in-plane displacement, Meas. Sci. Technol., 24, (2013)
[58] Zhu, Y. D.; Zhang, C. H.; Chen, X.; Yuan, H. J.; Wu, J. Z.; Chen, S. Y.; Lee, C. B.; Gad-El-Hak, M., Transition in hypersonic boundary layers: role of dilatational waves, AIAA J., 54, 3039-3049, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.