# zbMATH — the first resource for mathematics

Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties. (English) Zbl 1259.35040
The authors consider the following evolutionary system that models the dynamics of nematic liquid crystal flows, $\begin{cases} v_t + v \cdot \nabla v -v \Delta v + \nabla P =-\lambda \nabla \cdot [\nabla d \odot \nabla d \\ \quad + \alpha (\Delta d -f(d) ) \otimes d - (1-\alpha ) d \otimes (\Delta d -f(d))], \\ \nabla \cdot v =0 \\ d_t + (v \cdot \nabla )d-\alpha (\nabla v ) d + (1-\alpha )(\nabla ^T v ) d = \gamma (\Delta d -f(d)), \end{cases}\tag{1}$ in $$Q \times (0, \infty )$$, where $$Q$$ is a unit square in $${\mathbb R}^2$$ or a unit box in $${\mathbb R}^3$$. Here $$v$$ is the velocity field of the flow and $$d$$ represents the averaged macroscopic molecular orientations. $$P$$ is a scalar function representing the hydrodynamic pressure. The constants $$\nu ,\lambda$$ and $$\gamma$$ stand for viscosity, the competition between kinetic energy and potential energy, and macroscopic elastic relaxation time for the molecular orientation field, respectively. The constant $$\alpha \in [0,1]$$ is a parameter related to the shape of the liquid crystal molecule. The penalty function $$f(d)= \frac{1}{\eta ^2} (| d | ^2-1) d$$ with $$\eta \in (0,1]$$. They consider the equations (1) under the boundary condition $v(x+e_i ) = v(x), d(x+e_i)=d(x) \quad \mathrm{for}\, \, x \in {\mathbb R}^n {(2)}$ and the initial condition $v| _{t=0}= v_0(x), \quad \mathrm{with }\,\, \nabla \cdot v_0=0, d| _{t=0}=d_0(x), \quad \mathrm{for }\,\, x \in Q. {(3)}$ Define the function spaces $$H^m _p(Q)= \{v \in H^m({\mathbb R}^n , {\mathbb R}^n); v(x+e_i)= v(x)\}$$, $$\dot{H}^m_p(Q)= H_p^m (Q) \cap \left\{ v; \int _Q v(x)dx=0\right \}$$ and $$V= \{ v \in L^2 _p (Q,{\mathbb R}^n); \nabla \cdot v =0\}$$ where $$L^2_p(Q,{\mathbb R}^n)=H_p^0 (Q)$$. Then the authors get the following theorems.
Theorem 1 When $$n=2$$, then for any initial data $$(v_0,d_0)\in V \times H_p^2(Q)$$ and $$\alpha \in [0,1]$$, the problem (1)–(3) admits a unique global classical solution. It converges to a steady state $$(0,d_{\infty })$$ as $$t \to \infty$$ such that $\lim _{t \to \infty } (\| v(t) \| _{H^1}+ \| d(t)-d_{\infty }\| _{H^2})=0,$ where $$d_{\infty }$$ satisfies the following nonlinear elliptic periodic boundary value problem: $-\Delta d_{\infty }+f (d_{\infty })=0,\quad d_{\infty }(x+e_i)= d_{\infty }(x) \quad (x \in {\mathbb R}^2).$ Moreover, $\| v(t) \| _{H^1}+ \| d(t) -d_{\infty }\| _{H^2} \leq C (1+t)^{-\theta /(1-2\theta )}, \qquad \forall t \geq 0,$ where $$C$$ is a positive constant depending on $$\nu , \| v_0\| _{H^1}, \| d_0 \| _{H^2}, \| d_{\infty }\| _{H^2}$$. The constant $$\theta \in (0,1/2)$$ is the so-called Lojasiewicz exponent depending on $$d_{\infty }$$.
Theorem 2 When $$n=3$$, then for any initial data $$(v_0,d_0) \in V\times H_p^2(Q)$$ and $$\alpha \in [0,1]$$, if the constant viscosity is sufficiently large such that $$\nu \geq \nu _0(v_0,d_0)$$, then the problem (1)–(3) admits a unique global classical solution enjoying the same long-time behavior as in Theorem 1.
Theorem 3 When $$n=3$$, let $$d^* \in H_p^2(Q)$$ be an absolute minimizer of the functional $E(d)= \frac12 \| \nabla d \| ^ 2+ \int _Q F(d)dx.$ Then there exists a constant $$\sigma \in (0,1]$$, which may depend on $$\nu , f,$$ and $$d^*$$ , such that for any $$\alpha \in [0,1]$$ and initial data $$(v_0,d_0) \in V \times H_p^2(Q)$$ satisfying $$\| v_0\| _{H^1}+ \| d_0-d^* \| _{H^2}< \sigma$$, the problem (1)–(3) admits a unique global classical solution enjoying the same long-time behavior as in Theorem 1.

##### MSC:
 35B40 Asymptotic behavior of solutions to PDEs 35B41 Attractors 35Q35 PDEs in connection with fluid mechanics 76D05 Navier-Stokes equations for incompressible viscous fluids 76A15 Liquid crystals
##### Keywords:
Lojasiewicz exponent
Full Text:
##### References:
 [1] Cavaterra, C., Rocca, E.: On a 3D isothermal model for nematic liquid crystals accounting for stretching terms. Preprint arXiv:1107.3947v1, 1–14 (2011) · Zbl 1258.35188 [2] Coutand D., Shkoller S.: Well-posedness of the full Ericksen–Leslie model of nematic liquid crystals. C. R. Acad. Sci. Paris Ser. I Math. 333(10), 919–924 (2001) · Zbl 0999.35078 · doi:10.1016/S0764-4442(01)02161-9 [3] de Gennes P.G., Prost J.: The Physics of Liquid Crystals. Oxford Science Publications, Oxford (1993) [4] Ericksen J.: Conservation laws for liquid crystals. Trans. Soc. Rheol. 5, 22–34 (1961) [5] Ericksen J.: Continuum theory of nematic liquid crystals. Res. Mech. 21, 381–392 (1987) [6] Ericksen J.: Liquid crystals with variable degree of orientation. Arch. Ration. Mech. Anal. 113, 97–120 (1991) · Zbl 0729.76008 · doi:10.1007/BF00380413 [7] Feireisl E., Takáč P.: Long-time stabilization of solutions to the Ginzburg–Landau equations of superconductivity. Monatsh. Math. 133, 197–221 (2001) · Zbl 0993.35045 · doi:10.1007/s006050170020 [8] Grasselli, M., Wu, H.: Finite-dimensional global attractor for a system modeling the 2D nematic liquid crystal flow. ZAMP (2011). doi: 10.1007/s00033-011-0157-9 · Zbl 1242.35057 [9] Gurtin M.E.: An Introduction to Continuum Mechanics. Academic Press, New York (1981) · Zbl 0559.73001 [10] Haraux A., Jendoubi M.A.: Decay estimates to equilibrium for some evolution equations with an analytic nonlinearity. Asymptot. Anal. 26, 21–36 (2001) · Zbl 0993.35017 [11] Hardt R., Kinderlehrer D.: Mathematical Questions of Liquid Crystal Theory. The IMA Volumes in Mathematics and its Applications, vol. 5. Springer, New York (1987) · Zbl 0704.76005 [12] Huang, S.-Z.: Gradient Inequalities, with Applications to Asymptotic Behavior and Stability of Gradient-Like Systems. Mathematical Surveys and Monographs no. 126. AMS (2006) [13] Hyon Y., Kwak D.-Y., Liu C.: Energetic variational approach in complex fluids: Maximum dissipation principle. Discret. Contin. Dyn. Syst. 26(4), 1291–1304 (2010) · Zbl 1423.76380 · doi:10.3934/dcds.2010.26.1291 [14] Jeffery G.B.: The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. 102, 102–161 (1922) · JFM 49.0748.02 [15] Jendoubi M.A.: A simple unified approach to some convergence theorem of L. Simon. J. Funct. Anal 153, 187–202 (1998) · Zbl 0895.35012 · doi:10.1006/jfan.1997.3174 [16] Kaniel S., Shinbrot M.: Smoothness of weak solutions of the Navier–Stokes equations. Arch. Ration. Mech. Anal 24, 302–324 (1967) · Zbl 0152.44902 [17] Larson R.G.: The Structure and Rheology of Complex Fluids. Oxford University Press, Oxford (1995) [18] Leslie F.: Some constitutive equations for liquid crystals. Arch. Ration. Mech. Anal. 28, 265–283 (1968) · Zbl 0159.57101 [19] Leslie, F: Theory of flow phenomenum in liquid crystals. In: Brown, G. (ed.) Advances in Liquid Crystals, vol. 4, pp. 1–83. Academic Press, New York (1979) [20] Lin F.-H., Du Q.: Ginzburg–Landau vortices: dynamics, pinning, and hysteresis. SIAM J. Math. Anal. 28, 1265–1293 (1997) · Zbl 0888.35054 · doi:10.1137/S0036141096298060 [21] Lin F.-H., Liu C.: Nonparabolic dissipative system modeling the flow of liquid crystals. Commun. Pure Appl. Math. XLVIII, 501–537 (1995) · Zbl 0842.35084 · doi:10.1002/cpa.3160480503 [22] Lin F.-H., Liu C.: Partial regularities of the nonlinear dissipative systems modeling the flow of liquid crystals. Discret. Contin. Dyn. Syst. 2, 1–23 (1996) [23] Lin F.-H., Liu C.: Existence of solutions for the Ericksen–Leslie system. Arch. Ration. Mech. Anal. 154(2), 135–156 (2000) · Zbl 0963.35158 · doi:10.1007/s002050000102 [24] Liu C., Walkington N.J.: An Eulerian description of fluids containing visco-hyperelastic particles. Arch. Ration. Mech. Anal. 159, 229–252 (2001) · Zbl 1009.76093 · doi:10.1007/s002050100158 [25] Lin P., Liu C., Zhang H.: An energy law preserving C 0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics. J. Comput. Phys. 227(2), 1411–1427 (2007) · Zbl 1133.65077 · doi:10.1016/j.jcp.2007.09.005 [26] Liu C., Shen J., Yang X.: Dynamics of defect motion in nematic liquid crystal flow: modeling and numerical simulation. Commun. Comput. Phys. 2, 1184–1198 (2007) · Zbl 1164.76422 [27] Ł ojasiewicz, S.: Une propriété topologique des sous-ensembles analytiques réels, Colloque Internationaux du C.N.R.S., 117, Les équations aux dérivées partielles, pp. 87–89 (1963) [28] Ł ojasiewicz, S.: Ensembles semi-analytiques. I.H.E.S., Bures-sur-Yvette (1965) · Zbl 0241.32005 [29] Rybka P., Hoffmann K.-H.: Convergence of solutions to Cahn–Hilliard equation. Commun. Part. Differ. Equ. 24, 1055–1077 (1999) · Zbl 0936.35032 · doi:10.1080/03605309908821458 [30] Serrin J.: On the interior of weak solutions of Navier–Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962) · Zbl 0106.18302 [31] Simon L.: Asymptotics for a class of nonlinear evolution equation with applications to geometric problems. Ann. Math. 118, 525–571 (1983) · Zbl 0549.35071 · doi:10.2307/2006981 [32] Sun H., Liu C.: On energetic variational approaches in modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 23(1&2), 455–475 (2009) · Zbl 1156.76007 · doi:10.3934/dcds.2009.23.455 [33] Temam, R.: Navier–Stokes Equations and Nonlinear Functional Analysis. SIAM, Philadelphia (1983) · Zbl 0522.35002 [34] Temam, R.: Navier–Stokes Equations: Theory and Numerical Analysis. AMS (2001) · Zbl 0981.35001 [35] Wu H.: Convergence to equilibrium for a Cahn–Hilliard model with the Wentzell boundary condition. Asymptot. Anal. 54, 71–92 (2007) · Zbl 1139.34028 [36] Wu H.: Long-time behavior for nonlinear hydrodynamic system modeling the nematic liquid crystal flows. Discret. Contin. Dyn. Syst. 26(1), 379–396 (2010) · Zbl 1185.35178 · doi:10.3934/dcds.2010.26.379 [37] Wu H., Grasselli M., Zheng S.: Convergence to equilibrium for a parabolic-hyperbolic phase-field system with Neumann boundary conditions. Math. Model. Methods Appl. Sci. 17, 1–29 (2007) · Zbl 1119.65115 · doi:10.1142/S0218202507001814 [38] Zheng S.: Nonlinear Evolution Equations. Pitman Series Monographs and Survey in Pure and Applied Mathematics 133. Chapman & Hall/CRC, Boca Raton (2004)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.