Wu, Hao Hypergeometric SLE: conformal Markov characterization and applications. (English) Zbl 07178338 Commun. Math. Phys. 374, No. 2, 433-484 (2020). MSC: 82C20 82C24 82C26 82C27 82C43 PDF BibTeX XML Cite \textit{H. Wu}, Commun. Math. Phys. 374, No. 2, 433--484 (2020; Zbl 07178338) Full Text: DOI
Peltola, Eveliina; Wu, Hao Global and local multiple SLEs for \(\kappa\leq4\) and connection probabilities for level lines of GFF. (English) Zbl 1422.60142 Commun. Math. Phys. 366, No. 2, 469-536 (2019). MSC: 60J67 60G15 82B05 PDF BibTeX XML Cite \textit{E. Peltola} and \textit{H. Wu}, Commun. Math. Phys. 366, No. 2, 469--536 (2019; Zbl 1422.60142) Full Text: DOI
Baik, Jinho; Lee, Ji Oon; Wu, Hao Ferromagnetic to paramagnetic transition in spherical spin glass. (English) Zbl 1404.82029 J. Stat. Phys. 173, No. 5, 1484-1522 (2018). MSC: 82B44 82D30 60B20 60K35 PDF BibTeX XML Cite \textit{J. Baik} et al., J. Stat. Phys. 173, No. 5, 1484--1522 (2018; Zbl 1404.82029) Full Text: DOI
Wu, Hao Alternating arm exponents for the critical planar Ising model. (English) Zbl 1428.60119 Ann. Probab. 46, No. 5, 2863-2907 (2018). MSC: 60J67 60K35 82B20 PDF BibTeX XML Cite \textit{H. Wu}, Ann. Probab. 46, No. 5, 2863--2907 (2018; Zbl 1428.60119) Full Text: DOI Euclid arXiv
Cavaterra, Cecilia; Rocca, Elisabetta; Wu, Hao Optimal boundary control of a simplified Ericksen-Leslie system for nematic liquid crystal flows in \(2D\). (English) Zbl 1371.35216 Arch. Ration. Mech. Anal. 224, No. 3, 1037-1086 (2017). Reviewer: Vishnu Dutt Sharma (Mumbai) MSC: 35Q35 76A15 82D30 35Q93 35Q56 93C20 35D35 PDF BibTeX XML Cite \textit{C. Cavaterra} et al., Arch. Ration. Mech. Anal. 224, No. 3, 1037--1086 (2017; Zbl 1371.35216) Full Text: DOI arXiv
Grasselli, Maurizio; Wu, Hao Robust exponential attractors for the modified phase-field crystal equation. (English) Zbl 1332.35360 Discrete Contin. Dyn. Syst. 35, No. 6, 2539-2564 (2015). MSC: 35Q82 37L25 74N05 82C26 PDF BibTeX XML Cite \textit{M. Grasselli} and \textit{H. Wu}, Discrete Contin. Dyn. Syst. 35, No. 6, 2539--2564 (2015; Zbl 1332.35360) Full Text: DOI arXiv
Wu, Hao; Lin, Tai-Chia; Liu, Chun Diffusion limit of kinetic equations for multiple species charged particles. (English) Zbl 1308.35311 Arch. Ration. Mech. Anal. 215, No. 2, 419-441 (2015). MSC: 35Q84 35Q83 82C70 82C31 35D30 PDF BibTeX XML Cite \textit{H. Wu} et al., Arch. Ration. Mech. Anal. 215, No. 2, 419--441 (2015; Zbl 1308.35311) Full Text: DOI arXiv
Grasselli, Maurizio; Wu, Hao Well-posedness and long-time behavior for the modified phase-field crystal equation. (English) Zbl 1304.35690 Math. Models Methods Appl. Sci. 24, No. 14, 2743-2783 (2014). MSC: 35Q82 37L99 74N05 82C26 35A01 35A02 35B41 PDF BibTeX XML Cite \textit{M. Grasselli} and \textit{H. Wu}, Math. Models Methods Appl. Sci. 24, No. 14, 2743--2783 (2014; Zbl 1304.35690) Full Text: DOI arXiv
Wu, Hao; Jiang, Jie Global solution to the drift-diffusion-Poisson system for semiconductors with nonlinear recombination-generation rate. (English) Zbl 1284.35437 Asymptotic Anal. 85, No. 1-2, 75-105 (2013). Reviewer: Vicenţiu D. Rădulescu (Craiova) MSC: 35Q82 82D37 35M10 35D30 35J05 PDF BibTeX XML Cite \textit{H. Wu} and \textit{J. Jiang}, Asymptotic Anal. 85, No. 1--2, 75--105 (2013; Zbl 1284.35437) Full Text: DOI arXiv
Grasselli, Maurizio; Wu, Hao; Zheng, Songmu Convergence to equilibrium for parabolic-hyperbolic time-dependent Ginzburg-Landau-Maxwell equations. (English) Zbl 1183.35258 SIAM J. Math. Anal. 40, No. 5, 2007-2033 (2009). Reviewer: Rainer Picard (Dresden) MSC: 35Q56 35B40 82D55 78A25 PDF BibTeX XML Cite \textit{M. Grasselli} et al., SIAM J. Math. Anal. 40, No. 5, 2007--2033 (2009; Zbl 1183.35258) Full Text: DOI
Fan, Hong-Yi; Wu, Hao Energy level of coupled harmonic oscillator model Born of Heisenberg ferromagetic spin chain derived by invariant eigen-operator method. (English) Zbl 1392.82006 Commun. Theor. Phys. 49, No. 5, 1177-1178 (2008). MSC: 82B20 81Q10 PDF BibTeX XML Cite \textit{H.-Y. Fan} and \textit{H. Wu}, Commun. Theor. Phys. 49, No. 5, 1177--1178 (2008; Zbl 1392.82006) Full Text: DOI
Fan, Hong-Yi; Wu, Hao Solving energy levels for SSH Hamiltonian describing Peierls phase transition by virtue of invariant eigen-operator method. (English) Zbl 1392.81127 Commun. Theor. Phys. 49, No. 3, 759-762 (2008). MSC: 81Q10 82C26 PDF BibTeX XML Cite \textit{H.-Y. Fan} and \textit{H. Wu}, Commun. Theor. Phys. 49, No. 3, 759--762 (2008; Zbl 1392.81127) Full Text: DOI
Fan, Hong-Yi; Wu, Hao Deriving vibration modes of semi-infinite chain model by “invariant eigen-operator” method. (English) Zbl 1392.81126 Commun. Theor. Phys. 49, No. 1, 50-52 (2008). MSC: 81Q10 82C20 PDF BibTeX XML Cite \textit{H.-Y. Fan} and \textit{H. Wu}, Commun. Theor. Phys. 49, No. 1, 50--52 (2008; Zbl 1392.81126) Full Text: DOI
Grasselli, Maurizio; Wu, Hao; Zheng, Songmu Asymptotic behavior of a nonisothermal Ginzburg-Landau model. (English) Zbl 1171.35018 Q. Appl. Math. 66, No. 4, 743-770 (2008). Reviewer: Rostislav Vodak (Olomouc) MSC: 35B40 35K55 35K20 35B41 80A22 82D55 PDF BibTeX XML Cite \textit{M. Grasselli} et al., Q. Appl. Math. 66, No. 4, 743--770 (2008; Zbl 1171.35018) Full Text: DOI Link
Wu, Hao; Zheng, Songmu Asymptotic behavior of solution to the Cahn-Hilliard equation with dynamic boundary conditions. (English) Zbl 1068.35052 Kenmochi, N. (ed.) et al., Proceedings of the international conference on nonlinear partial differential equations and their applications, Shanghai, China, November 23–27, 2003. Tokyo: Gakkōtosho (ISBN 4-7625-0429-7/hbk). GAKUTO International Series. Mathematical Sciences and Applications 20, 382-390 (2004). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35K60 35K55 35B40 82C24 74N20 35K35 PDF BibTeX XML Cite \textit{H. Wu} and \textit{S. Zheng}, GAKUTO Int. Ser., Math. Sci. Appl. 20, 382--390 (2004; Zbl 1068.35052)
Wu, Hao; Zheng, Songmu Convergence to equilibrium for the Cahn-Hilliard equation with dynamic boundary conditions. (English) Zbl 1068.35018 J. Differ. Equations 204, No. 2, 511-531 (2004). Reviewer: Il’ya Sh. Mogilevskij (Tver’) MSC: 35B40 37L30 35K60 82C24 74N20 35K35 PDF BibTeX XML Cite \textit{H. Wu} and \textit{S. Zheng}, J. Differ. Equations 204, No. 2, 511--531 (2004; Zbl 1068.35018) Full Text: DOI