zbMATH — the first resource for mathematics

Global well-posedness of the two dimensional Beris-Edwards system with general Laudau-de Gennes free energy. (English) Zbl 1428.35378
Summary: In this paper, we consider the Beris-Edwards system for incompressible nematic liquid crystal flows. The system under investigation consists of the Navier-Stokes equations for the fluid velocity u coupled with an evolution equation for the order parameter \(Q\)-tensor. One important feature of the system is that its elastic free energy takes a general form and in particular, it contains a cubic term that possibly makes it unbounded from below. In the two dimensional periodic setting, we prove that if the initial \(L^\infty\)-norm of the \(Q\)-tensor is properly small, then the system admits a unique global weak solution. The proof is based on the construction of a specific approximating system that preserves the \(L^\infty\)-norm of the \(Q\)-tensor along the time evolution.
35Q35 PDEs in connection with fluid mechanics
35Q30 Navier-Stokes equations
76D03 Existence, uniqueness, and regularity theory for incompressible viscous fluids
76D05 Navier-Stokes equations for incompressible viscous fluids
76A15 Liquid crystals
35D30 Weak solutions to PDEs
Full Text: DOI arXiv
[1] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463-506, (2009) · Zbl 1254.76158
[2] Abels, H.; Dolzmann, G.; Liu, Y. N., Well-posedness of a fully coupled Navier-Stokes/Q-tensor system with inhomogeneous boundary data, SIAM J. Math. Anal., 46, 3050-3077, (2014) · Zbl 1336.35283
[3] Abels, H.; Dolzmann, G.; Liu, Y. N., Strong solutions for the Beris-Edwards model for nematic liquid crystals with homogeneous Dirichlet boundary conditions, Adv. Differential Equations, 21, 1-2, 109-152, (2016) · Zbl 1333.35174
[4] Ball, J., Mathematics of liquid crystals, Mol. Cryst. Liq. Cryst., 647, 1-27, (2016)
[5] Ball, J.; Majumdar, A., Nematic liquid crystals: from Maier-Saupe to a continuum theory, Mol. Cryst. Liq. Cryst., 525, 1-11, (2010)
[6] Ball, J.; Zarnescu, A., Orientability and energy minimization in liquid crystal models, Arch. Ration. Mech. Anal., 202, 2, 493-535, (2011) · Zbl 1263.76010
[7] Beris, A. N.; Edwards, B. J., Thermodynamics of Flowing Systems with Internal Microstructure, Oxford Engineerin Science Series, vol. 36, (1994), Oxford University Press: Oxford University Press Oxford, New York
[8] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, (2011), Springer Science + Business Media, LLC: Springer Science + Business Media, LLC New York · Zbl 1220.46002
[9] Cai, Y. Y.; Shen, J.; Xu, X., A stable scheme and its convergence analysis for a 2D dynamic Q-tensor model of nematic liquid crystals, Math. Models Methods Appl. Sci., 27, 8, 1459-1488, (2017) · Zbl 1368.76048
[10] Cavaterra, C.; Rocca, E.; Wu, H.; Xu, X., Global strong solutions of the full Navier-Stokes and Q-tensor system for nematic liquid crystal flows in two dimensions, SIAM J. Math. Anal., 48, 2, 1368-1399, (2016) · Zbl 1348.35166
[11] Chen, X. F.; Xu, X., Existence and uniqueness of global classical solutions of a gradient flow of the Landau – de Gennes energy, Proc. Amer. Math. Soc., 144, 3, 1251-1263, (2016) · Zbl 1342.35041
[12] Dai, M. M., Regularity problem for the nematic LCD system with Q-tensor in \(\mathbb{R}^3\), SIAM J. Math. Anal., 49, 6, 5007-5030, (2017) · Zbl 1394.35352
[13] Dai, M. M.; Feireisl, E.; Rocca, E.; Schimperna, G.; Schonbek, M., On asymptotic isotropy for a hydrodynamic model of liquid crystals, Asymptot. Anal., 97, 3-4, 189-210, (2016) · Zbl 1345.35073
[14] De Anna, F., A global 2D well-posedness result on the order tensor liquid crystal theory, J. Differential Equations, 262, 7, 3932-3979, (2017) · Zbl 1355.76010
[15] De Anna, F.; Zarnescu, A., Uniqueness of weak solutions of the full coupled Navier-Stokes and Q-tensor system in 2D, Commun. Math. Sci., 14, 8, 2127-2178, (2016) · Zbl 1355.35147
[16] de Gennes, P. G.; Prost, J., The Physics of Liquid Crystals, (1993), Oxford Science Publications: Oxford Science Publications Oxford
[17] Feireisl, E.; Rocca, E.; Schimperna, G.; Zarnescu, A., Evolution of non-isothermal Landau-de Gennes nematic liquid crystals flows with singular potential, Commun. Math. Sci., 12, 317-343, (2014) · Zbl 1330.76012
[18] Feireisl, E.; Rocca, E.; Schimperna, G.; Zarnescu, A., Nonisothermal nematic liquid crystal flows with the Ball-Majumdar free energy, Annali di Mat. Pura ed App., 194, 5, 1269-1299, (2015) · Zbl 1446.76067
[19] Guillén-González, F.; Rodríguez-Bellido, M. A., Weak time regularity and uniqueness for a Q-tensor model, SIAM J. Math. Anal., 46, 3540-3567, (2014) · Zbl 1315.35167
[20] Guillén-González, F.; Rodríguez-Bellido, M. A., Weak solutions for an initial-boundary Q-tensor problem related to liquid crystals, Nonlinear Analysis, 112, 84-104, (2015) · Zbl 1304.35547
[21] Huang, J. R.; Ding, S. J., Global well-posedness for the dynamical Q-tensor model of liquid crystals, Sci. China Math., 58, 6, 1349-1366, (2015) · Zbl 1327.76111
[22] Han, J. Q.; Luo, Y.; Wang, W.; Zhang, P. W.; Zhang, Z. F., From microscopic theory to macroscopic theory: a systematic study on modeling for liquid crystals, Arch. Ration. Mech. Anal., 215, 3, 741-809, (2015) · Zbl 1309.35076
[23] Huang, T.; Zhao, N., On the regularity of weak small solution of a gradient flow of the Landau – de Gennes energy, Proc. Amer. Math. Soc., (2018), online first
[24] Iyer, G.; Xu, X.; Zarnescu, A., Dynamic cubic instability in a 2D Q-tensor model for liquid crystals, Math. Models Methods Appl. Sci., 25, 8, 1477-1517, (2015) · Zbl 1328.82053
[25] Larios, A.; Lunasin, E.; Titi, E., Global well-posedness for the 2D Boussinesq system with anisotropic viscosity and without heat diffusion, J. Differential Equations, 255, 9, 2636-2654, (2013) · Zbl 1284.35343
[26] Li, J. K.; Titi, E.; Xin, Z. P., On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in \(\mathbb{R}^2\), Math. Models Methods Appl. Sci., 26, 4, 803-822, (2016) · Zbl 1332.76013
[27] Lions, J. L., Quelques méthodes de résolution des problémes aux limites non linéaires, (1969), Dunod, Gauthier-Villars: Dunod, Gauthier-Villars Paris, (in French) · Zbl 0189.40603
[28] Liu, Y. N.; Takahashi, T., Existence of global weak solutions for a phase-field model of a vesicle moving into a viscous incompressible fluid, Math. Methods Appl. Sci., 37, 10, 1507-1526, (2014) · Zbl 1294.35068
[29] Liu, Y. N.; Wang, W., On the initial boundary value problem of a Navier-Stokes/Q-tensor model for liquid crystals, Disc. Cont. Dyn. Sys.-B, 23, 9, 3879-3899, (2018) · Zbl 1406.35234
[30] Majumdar, A., Equilibrium order parameters of nematic liquid crystals in the Landau-de Gennes theory, European J. Appl. Math., 21, 181-203, (2010) · Zbl 1253.82089
[31] Majumdar, A.; Zarnescu, A., Landau-de Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Rational Mech. Anal., 196, 227-280, (2010) · Zbl 1304.76007
[32] Mottram, N. J.; Newton, C. J., Introduction to Q-tensor theory, (2014), preprint
[33] Paicu, M.; Zarnescu, A., Global existence and regularity for the full coupled Navier-Stokes and Q-tensor system, SIAM J. Math. Anal., 43, 2009-2049, (2011) · Zbl 1233.35160
[34] Paicu, M.; Zarnescu, A., Energy dissipation and regularity for a coupled Navier-Stokes and Q-tensor system, Arch. Ration. Mech. Anal., 203, 45-67, (2012) · Zbl 1315.76017
[35] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl., 146, 4, 65-96, (1987) · Zbl 0629.46031
[36] Temam, R., Navier-Stokes Equations and Nonlinear Functional Analysis, (1995), SIAM: SIAM Philadelphia · Zbl 0833.35110
[37] Wang, W.; Zhang, P. W.; Zhang, Z. F., Rigorous derivation from Landau – de Gennes theory to Ericksen-Leslie theory, SIAM J. Math. Anal., 47, 127-158, (2015) · Zbl 1335.35205
[38] Wilkinson, M., Strict physicality of global weak solutions of a Navier-Stokes Q-tensor system with singular potential, Arch. Ration. Mech. Anal., 218, 487-526, (2015) · Zbl 1329.35255
[39] Wu, H.; Xu, X.; Zarnescu, A., Dynamics and flow effects in the Beris-Edwards system modeling nematic liquid crystals, Arch. Ration. Mech. Anal., 231, 1217-1267, (2019) · Zbl 1421.76016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.