zbMATH — the first resource for mathematics

Existence and uniqueness of global weak solutions to a Cahn-Hilliard-Stokes-Darcy system for two phase incompressible flows in karstic geometry. (English) Zbl 1302.35217
Summary: We study the well-posedness of a coupled Cahn-Hilliard-Stokes-Darcy system which is a diffuse-interface model for essentially immiscible two phase incompressible flows with matched density in a karstic geometry. Existence of finite energy weak solution that is global in time is established in both 2D and 3D. Weak-strong uniqueness property of the weak solutions is provided as well.

35K61 Nonlinear initial, boundary and initial-boundary value problems for nonlinear parabolic equations
76S05 Flows in porous media; filtration; seepage
76D07 Stokes and related (Oseen, etc.) flows
35Q35 PDEs in connection with fluid mechanics
35D30 Weak solutions to PDEs
Full Text: DOI arXiv
[1] Han, D.; Sun, D.; Wang, X., Two phase flows in karstic geometry, Math. Methods Appl. Sci., (2013)
[2] Çeşmelioğlu, A.; Rivière, B., Analysis of time-dependent Navier-Stokes flow coupled with Darcy flow, J. Numer. Math., 16, 249-280, (2008) · Zbl 1159.76010
[3] Badea, L.; Discacciati, M.; Quarteroni, A., Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math., 115, 195-227, (2010) · Zbl 1423.35304
[4] Boyer, F., Mathematical study of multi-phase flow under shear through order parameter formulation, Asymptot. Anal., 20, 175-212, (1999) · Zbl 0937.35123
[5] Liu, C.; Shen, J., A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method, Phys. D, 179, 211-228, (2003) · Zbl 1092.76069
[6] Abels, H.; Lengeler, D., On sharp interface limits for diffuse interface models for two-phase flows, (2012)
[7] Lowengrub, J.; Truskinovsky, L., Quasi-incompressible Cahn-Hilliard fluids and topological transitions, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 454, 2617-2654, (1998) · Zbl 0927.76007
[8] Bear, J., Dynamics of fluids in porous media, (1988), Courier Dover Publications · Zbl 1191.76002
[9] Jones, I., Low Reynolds-number flow past a porous spherical shell, Proc. Cambridge Philos. Soc., 73, 231-238, (1973) · Zbl 0262.76061
[10] Saffman, P. G., On the boundary condition at the interface of a porous medium, Stud. Appl. Math., 1, 93-101, (1971) · Zbl 0271.76080
[11] Beavers, G.; Joseph, D., Boundary conditions at a naturally permeable wall, J. Fluid Mech., 30, 197-207, (1967)
[12] Jäger, W.; Mikelić, A., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 1111-1127, (2000) · Zbl 0969.76088
[13] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 57-74, (2002) · Zbl 1023.76048
[14] Discacciati, M.; Quarteroni, A., Analysis of a domain decomposition method for the coupling of the Stokes and Darcy equations, (Numerical Mathematics and Advanced Applications, vol. 320, (2003), Springer Milan), 3-20 · Zbl 1254.76051
[15] Discacciati, M.; Quarteroni, A., Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22, 315-426, (2009) · Zbl 1172.76050
[16] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 2195-2218, (2002) · Zbl 1037.76014
[17] Cao, Y.; Gunzburger, M.; Hua, F.; Wang, X., Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition, Commun. Math. Sci., 8, 1-25, (2010) · Zbl 1189.35244
[18] Chen, N.; Gunzburger, M.; Wang, X., Asymptotic analysis of the differences between the Stokes-Darcy system with different interface conditions and the Stokes-Brinkman system, J. Math. Anal. Appl., 368, 658-676, (2010) · Zbl 1352.35093
[19] Cao, Y.; Gunzburger, M.; Hua, F.; Wang, X., Analysis and finite element approximation of a coupled, continuum pipe-flow/Darcy model for flow in porous media with embedded conduits, Numer. Methods Partial Differential Equations, 27, 1242-1252, (2011) · Zbl 1282.76172
[20] Chen, W.; Gunzburger, M.; Hua, F.; Wang, X., A parallel Robin-Robin domain decomposition method for the Stokes-Darcy system, SIAM J. Numer. Anal., 49, 1064-1084, (2011) · Zbl 1414.76017
[21] Chen, W.; Gunzburger, M.; Sun, D.; Wang, X., Efficient and long-time accurate second-order methods for the Stokes-Darcy system, SIAM J. Numer. Anal., 51, 2563-2584, (2013) · Zbl 1282.76094
[22] Chidyagwai, P.; Rivière, B., On the solution of the coupled Navier-Stokes and Darcy equations, Comput. Methods Appl. Mech. Engrg., 198, 3806-3820, (2009) · Zbl 1230.76023
[23] Çeşmelioğlu, A.; Rivière, B., Existence of a weak solution for the fully coupled Navier-Stokes/Darcy-transport problem, J. Differential Equations, 252, 4138-4175, (2012) · Zbl 1234.35178
[24] Çeşmelioğlu, A.; Girault, V.; Rivière, B., Time-dependent coupling of Navier-Stokes and Darcy flows, ESAIM: M2AN, 47, 539-554, (2013) · Zbl 1267.76096
[25] Deimling, K., Nonlinear functional analysis, (1985), Springer-Verlag Berlin · Zbl 0559.47040
[26] Abels, H., Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities, Comm. Math. Phys., 289, 45-73, (2009) · Zbl 1165.76050
[27] Feng, X.; Wise, S., Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shaw flow and its fully discrete finite element approximation, SIAM J. Numer. Anal., 50, 1320-1343, (2012) · Zbl 1426.76258
[28] Wise, S. M., Unconditionally stable finite difference, nonlinear multigrid simulation of the Cahn-Hilliard-Hele-Shaw system of equations, J. Sci. Comput., 44, 38-68, (2010) · Zbl 1203.76153
[29] Han, D.; Wang, X., A second order in time, uniquely solvable, unconditionally stable numerical scheme for Cahn-Hilliard-Navier-Stokes equation, (2014), eprint
[30] Abels, H., On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities, Arch. Ration. Mech. Anal., 194, 463-506, (2009) · Zbl 1254.76158
[31] Zhao, L.; Wu, H.; Huang, H., Convergence to equilibrium for a phase-field model for the mixture of two viscous incompressible fluids, Commun. Math. Sci., 7, 939-962, (2009) · Zbl 1183.35224
[32] Gal, C. G.; Grasselli, M., Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D, Ann. Inst. H. Poincaré Anal. Non Linéaire, 27, 401-436, (2010) · Zbl 1184.35055
[33] Wang, X.; Zhang, Z., Well-posedness of the Hele-Shaw-Cahn-Hilliard system, Ann. Inst. H. Poincaré Anal. Non Linéaire, 30, 367-384, (2013) · Zbl 1291.35240
[34] Wang, X.; Wu, H., Long-time behavior for the Hele-Shaw-Cahn-Hilliard system, Asymptot. Anal., 78, 217-245, (2012) · Zbl 1246.35164
[35] Lowengrub, J.; Titi, E.; Zhao, K., Analysis of a mixture model of tumor growth, European J. Appl. Math., 24, 691-734, (2013) · Zbl 1292.35153
[36] Diegel, A. E.; Feng, X.; Wise, S. M., Analysis of a mixed finite element method for a Cahn-Hilliard-Darcy-Stokes system, (2014)
[37] Triebel, H., Interpolation theory, function spaces, differential operators, (1978), North-Holland Amsterdam · Zbl 0387.46033
[38] Lions, J.-L.; Magenes, E., Non-homogeneous boundary value problems and applications, vol. I, Grundlehren Math. Wiss., vol. 181, (1972), Springer-Verlag New York, translated from the French by P. Kenneth · Zbl 0223.35039
[39] Grisvard, P., Elliptic problems in nonsmooth domains, Monogr. Stud. Math., vol. 24, (1985), Pitman (Advanced Publishing Program) Boston, MA · Zbl 0695.35060
[40] Lions, J.-L., Quelques methodes de resolution des provlémes aux limites non linéaires, (1969), Dunod Paris · Zbl 0189.40603
[41] Temam, R., Navier-Stokes equations. theory and numerical analysis, Stud. Math. Appl., vol. 2, (1977), North-Holland Amsterdam, New York, Oxford · Zbl 0383.35057
[42] Eyre, D. J., Unconditionally gradient stable time marching the Cahn-Hilliard equation, (Computational and Mathematical Models of Microstructural Evolution, San Francisco, CA, 1998, Mater. Res. Soc. Sympos. Proc., vol. 529, (1998), MRS Warrendale, PA), 39-46
[43] Horgan, C. O., Korn’s inequalities and their applications in continuum mechanics, SIAM Rev., 37, 491-511, (1995) · Zbl 0840.73010
[44] Girault, V.; Raviart, P.-A., Finite element methods for Navier-Stokes equations, Springer Ser. Comput. Math., vol. 5, (1986), Springer-Verlag Berlin
[45] Showalter, R. E., Monotone operators in Banach space and nonlinear partial differential equations, Math. Surveys Monogr., vol. 49, (1997), American Mathematical Society Providence, RI · Zbl 0870.35004
[46] Brézis, H.; Gallouet, T., Nonlinear Schrödinger evolution equations, Nonlinear Anal., 4, 677-681, (1980) · Zbl 0451.35023
[47] Simon, J., Compact sets in the space \(L^p(0, T; B)\), Ann. Mat. Pura Appl. (4), 146, 65-96, (1987) · Zbl 0629.46031
[48] Colli, P.; Krejčí, P.; Rocca, E.; Sprekels, J., Nonlinear evolution inclusions arising from phase change models, Czechoslovak Math. J., 57, 132, 1067-1098, (2007) · Zbl 1174.35021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.