×

Stochastic heat equations for infinite strings with values in a manifold. (English) Zbl 1475.37088

The authors construct a stochastic process representing the evolution of a one- or two-sided infinite string, forced by space-time white noise, in a complete and stochastically complete manifold. Formally, this is a stochastic heat equation corresponding to the Dirichlet energy defined using the metric on the manifold. The paper continues the program begun in [M. Röckner et al., SIAM J. Math. Anal. 52, No. 3, 2237–2274 (2020; Zbl 1445.60048)], which considers the case of a compact string. The infinite volume of the domain necessitates constructing the process in weighted \(L^{2}\) spaces on the half-line or the full line. In addition to the construction, the authors establish functional inequalities providing a partial characterization of the ergodic properties of the string process in terms of the curvature of the manifold.

MSC:

37L55 Infinite-dimensional random dynamical systems; stochastic equations
37A50 Dynamical systems and their relations with probability theory and stochastic processes
35K05 Heat equation
35R60 PDEs with randomness, stochastic partial differential equations
60H15 Stochastic partial differential equations (aspects of stochastic analysis)
58J35 Heat and other parabolic equation methods for PDEs on manifolds
58J60 Relations of PDEs with special manifold structures (Riemannian, Finsler, etc.)

Citations:

Zbl 1445.60048
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Aida, Shigeki, Logarithmic Sobolev inequalities on loop spaces over compact Riemannian manifolds. Stochastic analysis and applications, Powys, 1995, 1-19 (1996), World Sci. Publ., River Edge, NJ · Zbl 0918.60041
[2] Aida, Shigeki, Gradient estimates of harmonic functions and the asymptotics of spectral gaps on path spaces, Interdiscip. Inform. Sci., 2, 1, 75-84 (1996) · Zbl 0921.31007 · doi:10.4036/iis.1996.75
[3] Aida, Shigeki; Elworthy, David, Differential calculus on path and loop spaces. I. Logarithmic Sobolev inequalities on path spaces, C. R. Acad. Sci. Paris S\'{e}r. I Math., 321, 1, 97-102 (1995) · Zbl 0837.60053
[4] Albeverio, Sergio; L\'{e}andre, R\'{e}mi; R\"{o}ckner, Michael, Construction of a rotational invariant diffusion on the free loop space, C. R. Acad. Sci. Paris S\'{e}r. I Math., 316, 3, 287-292 (1993) · Zbl 0776.58041
[5] Albeverio, S.; R\"{o}ckner, M., Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields, 89, 3, 347-386 (1991) · Zbl 0725.60055 · doi:10.1007/BF01198791
[6] Andersson, Lars; Driver, Bruce K., Finite-dimensional approximations to Wiener measure and path integral formulas on manifolds, J. Funct. Anal., 165, 2, 430-498 (1999) · Zbl 0943.58024 · doi:10.1006/jfan.1999.3413
[7] Arnaudon, Marc; Thalmaier, Anton; Wang, Feng-Yu, Harnack inequality and heat kernel estimates on manifolds with curvature unbounded below, Bull. Sci. Math., 130, 3, 223-233 (2006) · Zbl 1089.58024 · doi:10.1016/j.bulsci.2005.10.001
[8] Barden, Dennis; Le, Huiling, Some consequences of the nature of the distance function on the cut locus in a Riemannian manifold, J. London Math. Soc. (2), 56, 2, 369-383 (1997) · Zbl 0892.53021 · doi:10.1112/S002461079700553X
[9] BGHZ19 Y. Bruned, F. Gabriel, M. Hairer, and L. Zambotti, Geometric stochastic heat equations, arXiv: 1902.02884.
[10] Bruned, Y.; Hairer, M.; Zambotti, L., Algebraic renormalisation of regularity structures, Invent. Math., 215, 3, 1039-1156 (2019) · Zbl 1481.16038 · doi:10.1007/s00222-018-0841-x
[11] Chen, Zhen-Qing; Fukushima, Masatoshi, Symmetric Markov processes, time change, and boundary theory, London Mathematical Society Monographs Series 35, xvi+479 pp. (2012), Princeton University Press, Princeton, NJ · Zbl 1253.60002
[12] Capitaine, Mireille; Hsu, Elton P.; Ledoux, Michel, Martingale representation and a simple proof of logarithmic Sobolev inequalities on path spaces, Electron. Comm. Probab., 2, 71-81 (1997) · Zbl 0890.60045 · doi:10.1214/ECP.v2-986
[13] CH16A. Chandra and M. Hairer, An analytic BPHZ theorem for regularity structures arXiv:1612.08138, pages 1-113, 2016.
[14] Chavel, Isaac, Riemannian geometry, Cambridge Studies in Advanced Mathematics 98, xvi+471 pp. (2006), Cambridge University Press, Cambridge · Zbl 1099.53001 · doi:10.1017/CBO9780511616822
[15] Chen, Xin; Li, Xue-Mei; Wu, Bo, A concrete estimate for the weak Poincar\'{e} inequality on loop space, Probab. Theory Related Fields, 151, 3-4, 559-590 (2011) · Zbl 1245.58017 · doi:10.1007/s00440-010-0308-5
[16] CLW17X. Chen, X.-M. Li, and B. Wu, Small time gradient and Hessian estimates for logarithmic heat kernel on a general complete manifold, Preprint.
[17] CLW18 X. Chen, X.-M. Li, and B. Wu, Stochastic analysis on loop space over general Riemannian manifold, Preprint.
[18] CLWFLX. Chen, X.-M. Li, and B. Wu, Analysis on Free Riemannian Loop Space, Preprint.
[19] Chen, Xin; Wu, Bo, Functional inequality on path space over a non-compact Riemannian manifold, J. Funct. Anal., 266, 12, 6753-6779 (2014) · Zbl 1307.58014 · doi:10.1016/j.jfa.2014.03.017
[20] Chung, Kai Lai; Zhao, Zhong Xin, From Brownian motion to Schr\"{o}dinger’s equation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312, xii+287 pp. (1995), Springer-Verlag, Berlin · Zbl 0819.60068 · doi:10.1007/978-3-642-57856-4
[21] Davies, E. B., Heat kernel bounds, conservation of probability and the Feller property, J. Anal. Math., 58, 99-119 (1992) · Zbl 0808.58041 · doi:10.1007/BF02790359
[22] Driver, Bruce K.; R\"{o}ckner, Michael, Construction of diffusions on path and loop spaces of compact Riemannian manifolds, C. R. Acad. Sci. Paris S\'{e}r. I Math., 315, 5, 603-608 (1992) · Zbl 0771.58047
[23] Driver, Bruce K., A Cameron-Martin type quasi-invariance theorem for Brownian motion on a compact Riemannian manifold, J. Funct. Anal., 110, 2, 272-376 (1992) · Zbl 0765.60064 · doi:10.1016/0022-1236(92)90035-H
[24] Driver, Bruce K., A Cameron-Martin type quasi-invariance theorem for pinned Brownian motion on a compact Riemannian manifold, Trans. Amer. Math. Soc., 342, 1, 375-395 (1994) · Zbl 0792.60013 · doi:10.2307/2154699
[25] Elworthy, K. D.; Li, Xue-Mei, A class of integration by parts formulae in stochastic analysis. I. It\^o’s stochastic calculus and probability theory, 15-30 (1996), Springer, Tokyo · Zbl 0881.60052
[26] Elworthy, K. D.; Le Jan, Y.; Li, Xue-Mei, On the geometry of diffusion operators and stochastic flows, Lecture Notes in Mathematics 1720, ii+118 pp. (1999), Springer-Verlag, Berlin · Zbl 0942.58004 · doi:10.1007/BFb0103064
[27] Elworthy, K. D.; Li, X.-M.; Rosenberg, Steven, Curvature and topology: spectral positivity. Methods and applications of global analysis, Novoe Global. Anal., 45-60, 156 (1993), Voronezh. Univ. Press, Voronezh · Zbl 0861.58051
[28] Fang, Shizan; Malliavin, Paul, Stochastic analysis on the path space of a Riemannian manifold. I. Markovian stochastic calculus, J. Funct. Anal., 118, 1, 249-274 (1993) · Zbl 0798.58080 · doi:10.1006/jfan.1993.1145
[29] Fang, Shizan; Wang, Feng-Yu, Analysis on free Riemannian path spaces, Bull. Sci. Math., 129, 4, 339-355 (2005) · Zbl 1073.58028 · doi:10.1016/j.bulsci.2004.11.003
[30] Fang, Shizan; Wang, Feng-Yu; Wu, Bo, Transportation-cost inequality on path spaces with uniform distance, Stochastic Process. Appl., 118, 12, 2181-2197 (2008) · Zbl 1156.58308 · doi:10.1016/j.spa.2008.01.004
[31] Fang, Shizan; Wu, Bo, Remarks on spectral gaps on the Riemannian path space, Electron. Commun. Probab., 22, Paper No. 19, 13 pp. (2017) · Zbl 1365.58019 · doi:10.1214/17-ECP51
[32] Funaki, Tadahisa, On diffusive motion of closed curves. Probability theory and mathematical statistics, Kyoto, 1986, Lecture Notes in Math. 1299, 86-94 (1988), Springer, Berlin · Zbl 0629.58030 · doi:10.1007/BFb0078464
[33] Funaki, Tadahisa, A stochastic partial differential equation with values in a manifold, J. Funct. Anal., 109, 2, 257-288 (1992) · Zbl 0768.60055 · doi:10.1016/0022-1236(92)90019-F
[34] Funaki, Tadahisa; Hoshino, Masato, A coupled KPZ equation, its two types of approximations and existence of global solutions, J. Funct. Anal., 273, 3, 1165-1204 (2017) · Zbl 1370.60104 · doi:10.1016/j.jfa.2017.05.002
[35] Funaki, Tadahisa; Quastel, Jeremy, KPZ equation, its renormalization and invariant measures, Stoch. Partial Differ. Equ. Anal. Comput., 3, 2, 159-220 (2015) · Zbl 1327.60128 · doi:10.1007/s40072-015-0046-x
[36] Funaki, Tadahisa; Xie, Bin, A stochastic heat equation with the distributions of L\'{e}vy processes as its invariant measures, Stochastic Process. Appl., 119, 2, 307-326 (2009) · Zbl 1157.60063 · doi:10.1016/j.spa.2008.02.007
[37] Fukushima, Masatoshi; \={O}shima, Y\={o}ichi; Takeda, Masayoshi, Dirichlet forms and symmetric Markov processes, De Gruyter Studies in Mathematics 19, x+392 pp. (1994), Walter de Gruyter & Co., Berlin · Zbl 0838.31001 · doi:10.1515/9783110889741
[38] Fang, Shizan; Wang, Feng-Yu, Analysis on free Riemannian path spaces, Bull. Sci. Math., 129, 4, 339-355 (2005) · Zbl 1073.58028 · doi:10.1016/j.bulsci.2004.11.003
[39] Greene, R. E.; Wu, H., Function theory on manifolds which possess a pole, Lecture Notes in Mathematics 699, ii+215 pp. (1979), Springer, Berlin · Zbl 0414.53043
[40] Gourcy, Mathieu; Wu, Liming, Logarithmic Sobolev inequalities of diffusions for the \(L^2\) metric, Potential Anal., 25, 1, 77-102 (2006) · Zbl 1098.60027 · doi:10.1007/s11118-006-9009-1
[41] Hairer, M., A theory of regularity structures, Invent. Math., 198, 2, 269-504 (2014) · Zbl 1332.60093 · doi:10.1007/s00222-014-0505-4
[42] Hai16M. Hairer, The motion of a random string, arXiv:1605.02192, pages 1-20, 2016.
[43] Hsu, Elton P., Logarithmic Sobolev inequalities on path spaces over Riemannian manifolds, Comm. Math. Phys., 189, 1, 9-16 (1997) · Zbl 0892.58083 · doi:10.1007/s002200050188
[44] Hsu, Elton P., Integration by parts in loop spaces, Math. Ann., 309, 2, 331-339 (1997) · Zbl 0899.58008 · doi:10.1007/s002080050115
[45] Hsu, Elton P., Stochastic analysis on manifolds, Graduate Studies in Mathematics 38, xiv+281 pp. (2002), American Mathematical Society, Providence, RI · Zbl 0994.58019 · doi:10.1090/gsm/038
[46] Inoue, Atsushi; Maeda, Yoshiaki, On integral transformations associated with a certain Lagrangian-as a prototype of quantization, J. Math. Soc. Japan, 37, 2, 219-244 (1985) · Zbl 0584.58019 · doi:10.2969/jmsj/03720219
[47] L\'{e}andre, R., Integration by parts formulas and rotationally invariant Sobolev calculus on free loop spaces, J. Geom. Phys., 11, 1-4, 517-528 (1993) · Zbl 0786.60074 · doi:10.1016/0393-0440(93)90075-P
[48] Leandre, R., Invariant Sobolev calculus on the free loop space, Acta Appl. Math., 46, 3, 267-350 (1997) · Zbl 0895.60055 · doi:10.1023/A:1005730013728
[49] L\'{e}andre, R.; Norris, J. R., Integration by parts and Cameron-Martin formulas for the free path space of a compact Riemannian manifold. S\'{e}minaire de Probabilit\'{e}s, XXXI, Lecture Notes in Math. 1655, 16-23 (1997), Springer, Berlin · Zbl 0889.60058 · doi:10.1007/BFb0119288
[50] L\"{o}bus, J\"{o}rg-Uwe, A class of processes on the path space over a compact Riemannian manifold with unbounded diffusion, Trans. Amer. Math. Soc., 356, 9, 3751-3767 (2004) · Zbl 1052.60062 · doi:10.1090/S0002-9947-04-03439-7
[51] Ma, Zhi Ming; R\"{o}ckner, Michael, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, vi+209 pp. (1992), Springer-Verlag, Berlin · Zbl 0826.31001 · doi:10.1007/978-3-642-77739-4
[52] Ma, Zhi-Ming; R\"{o}ckner, Michael, Construction of diffusions on configuration spaces, Osaka J. Math., 37, 2, 273-314 (2000) · Zbl 0968.58028
[53] N A. Naber, Characterizations of bounded Ricci curvature on smooth and nonsmooth spaces, arXiv: 1306.6512v4.
[54] Norris, J. R., Ornstein-Uhlenbeck processes indexed by the circle, Ann. Probab., 26, 2, 465-478 (1998) · Zbl 0940.60052 · doi:10.1214/aop/1022855640
[55] R\"{o}ckner, Michael; Wu, Bo; Zhu, Rongchan; Zhu, Xiangchan, Stochastic heat equations with values in a manifold via Dirichlet forms, SIAM J. Math. Anal., 52, 3, 2237-2274 (2020) · Zbl 1445.60048 · doi:10.1137/18M1211076
[56] Stroock, Daniel W., An introduction to the analysis of paths on a Riemannian manifold, Mathematical Surveys and Monographs 74, xviii+269 pp. (2000), American Mathematical Society, Providence, RI · Zbl 0942.58001
[57] Thalmaier, Anton, On the differentiation of heat semigroups and Poisson integrals, Stochastics Stochastics Rep., 61, 3-4, 297-321 (1997) · Zbl 0897.60064 · doi:10.1080/17442509708834123
[58] Thalmaier, Anton; Wang, Feng-Yu, Gradient estimates for harmonic functions on regular domains in Riemannian manifolds, J. Funct. Anal., 155, 1, 109-124 (1998) · Zbl 0914.58042 · doi:10.1006/jfan.1997.3220
[59] Wang, Fengyu, Spectral gap on path spaces with infinite time-interval, Sci. China Ser. A, 42, 6, 600-604 (1999) · Zbl 0961.58014 · doi:10.1007/BF02880078
[60] Wang, Feng-Yu, Weak Poincar\'{e} inequalities on path spaces, Int. Math. Res. Not., 2, 89-108 (2004) · Zbl 1083.58034 · doi:10.1155/S1073792804130882
[61] W05 F. Y. Wang, Functional Inequalities, Markov Semigroup and Spectral Theory, Chinese Sciences Press, Beijing (2005)
[62] Wang, Feng-Yu; Wu, Bo, Quasi-regular Dirichlet forms on Riemannian path and loop spaces, Forum Math., 20, 6, 1084-1096 (2008) · Zbl 1159.58020 · doi:10.1515/FORUM.2008.049
[63] Wang, Feng-Yu; Wu, Bo, Quasi-regular Dirichlet forms on free Riemannian path spaces, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 12, 2, 251-267 (2009) · Zbl 1185.60091 · doi:10.1142/S0219025709003628
[64] Wang, Fengyu; Wu, Bo, Pointwise characterizations of curvature and second fundamental form on Riemannian manifolds, Sci. China Math., 61, 8, 1407-1420 (2018) · Zbl 1400.58011 · doi:10.1007/s11425-017-9296-8
[65] W1 B. Wu, Characterizations of the upper bound of Bakry-Emery curvature, to appear in J. Geom. Anal.. · Zbl 1462.53038
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.