×

Modeling the joint epidemics of TB and HIV in a South African township. (English) Zbl 1194.92052

Summary: We present a simple mathematical model with six compartments for the interaction between HIV and TB epidemics. Using data from a township near Cape Town, South Africa, where the prevalence of HIV is above \(20\%\) and where the TB notification rate is close to \(2,000\) per \(100,000\) per year, we estimate some of the model parameters and study how various control measures might change the course of these epidemics. Condom promotion, increased TB detection and TB preventive therapy have a clear positive effect. The impact of antiretroviral therapy on the incidence of HIV is unclear and depends on the extent to which it reduces sexual transmission. However, our analysis suggests that it will greatly reduce the TB notification rate.

MSC:

92C60 Medical epidemiology
34C60 Qualitative investigation and simulation of ordinary differential equation models
93A30 Mathematical modelling of systems (MSC2010)
92D30 Epidemiology
92C50 Medical applications (general)
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Atun, R.A., Lebcir, R., Drobniewski, F., Coker, R.J.: Impact of an effective multidrug-resistant tuberculosis control programme in the setting of an immature HIV epidemic: system dynamics simulation model. Int. J. STD AIDS 16, 560–570 (2005)
[2] Atun, R.A., Lebcir, R.M., Drobniewski, F., McKee, M., Coker, R.J.: High coverage with HAART is required to substantially reduce the number of deaths from tuberculosis: system dynamics simulation. Int. J. STD AIDS 18, 267–273 (2007)
[3] Badri, M., Wilson, D., Wood, R.: Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study. Lancet 359, 2059–2064 (2002)
[4] Bermejo, A., Veeken, H., Berra, A.: Tuberculosis incidence in developing countries with high prevalence of HIV infection. AIDS 6, 1203–1206 (1992)
[5] Blyuss, K.B., Kyrychko, Yu.N.: On a basic model of a two-disease epidemic. Appl. Math. Comput. 160, 177–187 (2005) · Zbl 1055.92048
[6] Borgdorff, M.W.: Annual risk of tuberculosis infection–time for an update?. Bull. WHO 80, 501–502 (2002)
[7] Breban, R., Blower, S.: The reinfection threshold does not exist. J. Theor. Biol. 235, 151–152 (2005)
[8] Brewer, T.F., Heymann, S.J., Colditz, G.A., Wilson, M.E., Auerbach, K., Kane, D., Fineberg, H.V.: Evaluation of tuberculosis control policies using computer simulation. J. Am. Med. Assoc. 276, 1898–1903 (1996)
[9] Castillo-Chavez, C., Song, B.: Dynamical models of tuberculosis and their applications. Math. Biosci. Eng. 1, 361–404 (2004) · Zbl 1060.92041
[10] Cohen, T., Lipsitch, M., Walensky, R.P., Murray, M.: Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations. Proc. Natl. Acad. Sci. USA 103, 7042–7047 (2006)
[11] Corbett, E.L., Charalambous, S., Fielding, K., Clayton, T., Hayes, R.J., De Cock, K.M., Churchyard, G.J.: Stable incidence rates of tuberculosis (TB) among human immunodeficiency virus (HIV)-negative South African gold miners during a decade of epidemic HIV-associated TB. J. Infect. Dis. 188, 1156–1163 (2003)
[12] Corbett, E.L., Charalambous, S., Moloi, V.M. et al.: Human immunodeficiency virus and the prevalence of undiagnosed tuberculosis in African gold miners. Am. J. Respir. Care Med. 170, 673–679 (2004)
[13] Corbett, E.L., Watt, C.J., Walker, N., Maher, D., Williams, B.G., Raviglione, M.C., Dye, C.: The growing burden of tuberculosis: global trends and interactions with the HIV epidemic. Arch. Intern. Med. 163, 1009–1021 (2003)
[14] Currie, C.S.M., Williams, B.G., Cheng, R.C.H., Dye, C.: Tuberculosis epidemics driven by HIV: is prevention better than cure?. AIDS 17, 2501–2508 (2003)
[15] Currie, C.S.M., Floyd, K., Williams, B.G., Dye, C.: Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence. BMC Public Health 5, 130 (2005). doi: 10.1186/1471-2458-5-130
[16] Daley, C.L., Small, P.M., Schecter, G.F., Schoolnik, G.K., McAdam, R.A., Jacobs, W.R. Jr, Hopewell, P.C.: An outbreak of tuberculosis with accelerated progression among persons infected with the human immunodeficiency virus: An analysis using restriction-fragment-length polymorphisms. N. Engl. J. Med. 326(4), 231–235 (1992)
[17] Debanne, A.M., Bielefeld, R.A., Cauthen, G.M., Daniel, T.M., Rowland, D.Y.: Multivariate markovian modeling of tuberculosis: forecasts for the United States. Emerg. Infect. Dis. 6, 148–157 (2000)
[18] Diekmann, O., Heesterbeek, J.A.P.: Mathematical Epidemiology of Infectious Diseases–Model Building, Analysis and Interpretation. Wiley, Chichester (2000) · Zbl 0997.92505
[19] Di Perri, G., Cruciani, M., Danzi, M.C., Luzzati, R., De Checchi, G., Malena, M. et al.: Nosocomial epidemic of active tuberculosis among HIV-infected patients. Lancet 2, 1502–1504 (1989)
[20] Dowdy, D.W., Chaisson, R.E., Moulton, L.H., Dorman, S.E.: The potential impact of enhanced diagnostic techniques for tuberculosis driven by HIV: a mathematical model. AIDS 20, 751–762 (2006)
[21] Dye, C., Garnett, G.P., Sleeman, K., Williams, B.G.: Prospects for worldwide tuberculosis control under the WHO DOTS strategy. Lancet 352, 1886–1891 (1998)
[22] Egwaga, S.M., Cobelens, F.G., Muwinge, H., Verhage, C., Kalisvaart, N., Borgdorff, M.W.: The impact of the HIV epidemic on tuberculosis transmission in Tanzania. AIDS 20, 915–921 (2006)
[23] Elliott, A.M., Halwiindi, B., Hayes, R.J., Luo, N., Mwinga, A.G., Tembo, G. et al.: The impact of human immunodeficiency virus on mortality of patients treated for tuberculosis in a cohort study in Zambia. Trans. R. Soc. Trop. Med. Hyg. 89, 78–82 (1995)
[24] Feng, Z., Castillo-Chavez, C., Capurro, A.F.: A model for tuberculosis with exogenous reinfection. Theor. Popul. Biol. 57, 235–247 (2000) · Zbl 0972.92016
[25] Feng, Z., Huang, W., Castillo-Chavez, C.: On the role of variable latent periods in mathematical models for tuberculosis. J. Dyn. Differ. Equ. 13, 425–452 (2001) · Zbl 1012.34045
[26] Gomes, M.G.M., Franco, A.O., Gomes, M.C., Medley, G.F.: The reinfection threshold promotes variability in tuberculosis epidemiology and vaccine efficacy. Proc. R. Soc. Lond. B 271, 617–623 (2004)
[27] Gomes, M.G.M., White, L.J., Medley, G.F.: The reinfection threshold. J. Theor. Biol. 236, 111–113 (2005)
[28] Gomes, M.G.M., Rodrigues, P., Hilker, F.M., Mantilla-Beniers, N.B., Muehlen, M., Paulo, A.C., Medley, G.F.: Implications of partial immunity on the prospects for tuberculosis control by post-exposure interventions. J. Theor. Biol. 248, 608–617 (2007)
[29] Guwatudde, D., Debanne, S.M., Diaz, M., King, C., Whalen, C.C.: A re-examination of the potential impact of preventive therapy on the public health problem of tuberculosis in contemporary sub-Saharan Africa. Prev. Med. 39, 1036–1046 (2004)
[30] Hethcote, H.W., van den Driessche, P.: Some epidemiological models with nonlinear incidence. J. Math. Biol. 29, 271–287 (1991) · Zbl 0722.92015
[31] Heymann, S.J.: Modelling the efficacy of prophylactic and curative therapies for preventing the spread of tuberculosis in Africa. Trans. R. Soc. Trop. Med. Hyg. 87, 406–411 (1993)
[32] Hughes, G.R., Currie, C.S.M., Corbett, E.L.: Modeling tuberculosis in areas of high HIV prevalence. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (eds.) Proceedings of the 2006 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 459–465 (2006)
[33] Kline, S.E., Hedemark, L.L., Davies, S.F.: Outbreak of tuberculosis among regular patrons of a neighborhood bar. N. Engl. J. Med. 333, 222–227 (1995)
[34] Lawn, S.D., Badri, M., Wood, R.: Tuberculosis among HIV-infected patients receiving HAART: long term incidence and risk factors in a South African cohort. AIDS 19, 2109–2116 (2005)
[35] Lawn, S.D., Bekker, L.-G., Middelkoop, K., Myer, L., Wood, R.: Impact of HIV infection on the epidemiology of tuberculosis in a peri-urban community in South Africa: The need for age-specific interventions. Clin. Infect. Dis. 42, 1040–1047 (2006)
[36] Lawn, S.D., Bekker, L.-G., Wood, R.: How effectively does HAART restore immune responses to Mycobacterium tuberculosis? Implications for tuberculosis control. AIDS 19, 1113–1124 (2005)
[37] Lawn, S.D., Myer, L., Bekker, L.-G., Wood, R.: Burden of tuberculosis in an antiretroviral treatment programme in sub-Saharan Africa: impact on treatment outcomes and implications for tuberculosis control. AIDS 20, 1605–1612 (2006)
[38] Lawn, S.D., Wood, R.: The epidemic of HIV-associated tuberculosis in sub-Saharan Africa: does this also impact non-HIV-infected individuals?. AIDS 20, 1787–1788 (2006)
[39] Lawn, S.D., Wood, R.: Tuberculosis control in South Africa–will HAART help?. S. Afr. Med. J. 96, 502–504 (2006)
[40] Lawn, S.D., Wood, R.: When should antiretroviral treatment be started in patients with HIV-associated tuberculosis in South Africa?. S. Afr. Med. J. 97, 412–414 (2007)
[41] Lawn, S.D., Wilkinson, R.J., Lipman, M.C.I., Wood, R.: Immune reconstitution and ’unmasking’ of tuberculosis during antiretroviral therapy. Am. J. Respir. Crit. Care Med. (2008). doi: 10.1164/rccm.200709-1311PP
[42] Lipsitch, M., Murray, M.B.: Multiple equilibria: Tuberculosis transmission require unrealistic assumptions. Theor. Popul. Biol. 63, 169–170 (2003)
[43] Lungu, E.: Anti-tuberculosis resistance in patients co-infected with HIV and TB. Abstract presented at CMS-MITACS Joint Conference, Winnipeg, MB, Canada, May 31–June 3, 2007. http://www.math.ca/Reunions/ete07/abs/pdf/id-el.pdf
[44] Massad, E., Burattini, M.N., Coutinho, F.A.B., Yang, H.M., Raimundo, S.M.: Modeling the interaction between AIDS and tuberculosis. Math. Comput. Modell. 17, 7–21 (1993) · Zbl 0784.92023
[45] Miranda, A., Morgan, M., Jamal, L. et al.: Impact of antiretroviral therapy on the incidence of tuberculosis: the Brazilian experience, 1995–2001. PLoS ONE 2, e826 (2007)
[46] Moghadas, S.M., Gumel, A.B.: Analysis of a model for transmission dynamics of TB. Can. Appl. Math. Q. 10, 411–428 (2002) · Zbl 1060.92043
[47] Moghadas, S.M., Gumel, A.B.: An epidemic model for the transmission dynamics of HIV and another pathogen. ANZIAM J. 45, 1–13 (2003) · Zbl 1037.92035
[48] Moghadas, S.M., Alexander, M.E.: Exogenous reinfection and resurgence of tuberculosis: a theoretical framework. J. Biol. Syst. 12, 231–247 (2004) · Zbl 1074.92021
[49] Murphy, B.M., Singer, B.H., Kirschner, D.: On the treatment of TB in heterogeneous populations. J. Theor. Biol. 223, 391–404 (2003)
[50] Murray, C.J.L., Styblo, K., Rouillon, A.: Tuberculosis in developing countries: burden, intervention, and cost. Bull. Int. Union Tuberc. Lung Dis. 65, 6–24 (1990)
[51] Murray, C.J.L., Salomon, J.A.: Modeling the impact of global tuberculosis control strategies. Proc. Natl. Acad. Sci. USA 95, 13881–13886 (1998)
[52] Naresh, R., Tripathi, A.: Modelling and analysis of HIV–TB coinfection in a variable size population. Math. Model. Anal. 10, 275–286 (2005) · Zbl 1082.92030
[53] Nunn, A.J., Mulder, D.W., Kamali, A., Ruberantwari, A., Kengeya-Kayondo, J.F., Whitworth, J.: Mortality associated with HIV-1 infection over five years in a rural Ugandan population: cohort study. Br. Med. J. 315(7111), 767–771 (1997)
[54] Porco, T.C., Blower, S.M.: Quantifying the intrinsic transmission dynamics of tuberculosis. Theor. Popul. Biol. 54, 117–132 (1998) · Zbl 0921.92018
[55] Porco, T.C., Small, P.M., Blower, S.M.: Amplification dynamics: predicting the effect of HIV on tuberculosis outbreaks. JAIDS 28, 437–444 (2001)
[56] Raimundo, S.M., Yang, H.M., Bassanezi, R.C., Ferreira, M.A.C.: The attracting basins and the assessment of the transmission coefficients for HIV and M. Tuberculosis infections among women inmates. J. Biol. Syst. 10, 61–83 (2002) · Zbl 1099.92039
[57] Raimundo, S.M., Engel, A.B., Yang, H.M., Bassanezi, R.C.: An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models. Syst. Anal. Model. Simul. 43, 423–442 (2003) · Zbl 1057.92047
[58] Schinazi, R.B.: Can HIV invade a population which is already sick?. Bull. Braz. Math. Soc. 34, 479–488 (2003) · Zbl 1053.60106
[59] Schulzer, M., Fitzgerald, J.M., Enarson, D.A., Grzybowski, S.: An estimate of the future size of the tuberculosis problem in sub-Saharan Africa resulting from HIV infection. Tuber. Lung. Dis. 73, 52–58 (1992)
[60] Schulzer, M., Radhamani, M.P., Grzybowski, S., Mak, E., Fitzgerald, J.M.: A mathematical model for the prediction of the impact of HIV infection on tuberculosis. Int. J. Epidemiol. 23, 400–407 (1994)
[61] Selwyn, P.A., Hartel, D., Lewis, V.A., Schoenbaum, E.E., Vermund, S.H., Klein, R.S., Walker, A.T., Friedland, G.H.: A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection. N. Engl. J. Med. 320, 545–550 (1989)
[62] Selwyn, P.A., Sckell, B.M., Alcabes, P., Friedland, G.H., Klein, R.S., Schoenbaum, E.E.: High risk of active tuberculosis in HIV-infected drug users with cutaneous anergy. JAMA 268, 504–509 (1992)
[63] Sharomi, O., Podder, C.N., Gumel, A.B.: Mathematical analysis of the transmission dynamics of HIV/TB coinfection in the presence of treatment. Math. Biosci. Eng. 5, 145–174 (2008) · Zbl 1140.92016
[64] Singer, B.H., Kirschner, D.E.: Influence of backward bifurcation on interpretation of R 0 in a model of epidemic tuberculosis with reinfection. Math. Biosci. Eng. 1, 81–93 (2004) · Zbl 1059.92047
[65] Sutherland, I., Svandova, E., Radhakrishna, S.: The development of clinical tuberculosis following infection with tubercle bacilli. Tubercle 63, 255–268 (1982)
[66] UNAIDS: 2006 Report on the global AIDS epidemic. UNAIDS, Geneva (2006)
[67] Veening, G.J.: Long term isoniazid prophylaxis: controlled trial on INH prophylaxis after recent tuberculin conversion in young adults. Bull. Int. Union Tuberc. 41, 169–171 (1968)
[68] Vynnycky, E., Fine, P.E.M.: The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection. Epidemiol. Infect. 119, 183–201 (1997)
[69] Wang, W.: Epidemic models with nonlinear infection forces. Math. Biosci. Eng. 3, 267–279 (2006) · Zbl 1089.92052
[70] West, R.W., Thompson, J.R.: Modeling the impact of HIV on the spread of tuberculosis in the United States. Math. Biosci. 143, 35–60 (1997) · Zbl 0905.92028
[71] Williams, B.G., Gouws, E.: The epidemiology of human immunodeficiency virus in South Africa. Philos. Trans. R. Soc. Lond. B Biol. Sci. 356, 1077–1086 (2001)
[72] Williams, B.G., Granich, R., Chauhan, L.S., Dharmshaktu, N.S., Dye, C.: The impact of HIV/AIDS on the control of tuberculosis in India. Proc. Natl. Acad. Sci. USA 102, 9619–9624 (2005)
[73] Williams, B.G., Lloyd-Smith, J.O., Gouws, E., Hankins, C., Getz, W.M., Hargrove, J., de Zoysa, I., Dye, C., Auvert, B.: The potential impact of male circumcision on HIV in sub-Saharan Africa. PLoS Med. 3(7), e262 (2006)
[74] Williams, B.G., Maher, D.: Tuberculosis fueled by HIV: Putting out the flames. Am. J. Resp. Crit. Care 175, 6–7 (2007)
[75] Wood, R., Middelkoop, K., Myer, L., Grant, A.D., Whitelaw, A., Lawn, S.D., Kaplan, G., Huebner, R., McIntyre, J., Bekker, L.-G.: Undiagnosed tuberculosis in a community with high HIV-prevalence: implications for TB control. Am. J. Respir. Crit. Care 175, 87–93 (2007)
[76] World Health Organization: Global tuberculosis control: surveillance, planning, financing. WHO, Geneva (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.