×

An investigation into the statistical properties of TB episodes in a South African community with high HIV prevalence. (English) Zbl 1331.92149

Summary: Continuous differential equations are often applied to small populations with little time spent on understanding uncertainty brought about by small-population effects. Despite large numbers of individuals being latently infected with Mycobacterium tuberculosis (TB), progression from latent infection to observable disease is a relatively rare event. For small communities, this means case counts are subject to stochasticity, and deterministic models may not be appropriate tools for interpreting transmission trends. Furthermore, the nonlinear nature of the underlying dynamics means that fluctuations are autocorrelated, which can invalidate standard statistical analyses which assume independent fluctuations.
Here we extend recent work using a system of differential equations to study the HIV-TB epidemic in Masiphumelele, a community near Cape Town in South Africa [N. Bacaër, et al., “Modeling the joint epidemics of TB and HIV in a South African township” J. Mol. Biol. 57, No. 4, 557–593 (2008; doi:10.1007/s00285-008-0177-z)] by studying the statistical properties of active TB events. We apply van Kampen’s system-size (or population-size) expansion technique to obtain an approximation to a master equation describing the dynamics. We use the resulting Fokker-Planck equation and point-process theory to derive two-time correlation functions for active TB events. This method can be used to gain insight into the temporal aspect of cluster identification, which currently relies on DNA classification only.

MSC:

92D30 Epidemiology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bacaer, N.; Ouifki, R.; Pretorius, C. D.; Wood, R.; Williams, B., Modeling the joint epidemics of TB and HIV in a South African township, J. Math. Biol., 57, 4, 557-593 (2008) · Zbl 1194.92052
[2] Badri, M.; Wilson, D.; Wood, R., Effect of highly active antiretroviral therapy on incidence of tuberculosis in South Africa: a cohort study, Lancet, 359, 9323, 2059-2064 (2002)
[3] Chen, W. Y.; Bokka, S., Stochastic modeling of nonlinear epidemiology, J. Theor. Biol., 234, 4, 455-470 (2005) · Zbl 1445.92267
[4] Cohen, T.; Lipsitch, M.; Walensky, R. P.; Murray, M., Beneficial and perverse effects of isoniazid preventive therapy for latent tuberculosis infection in HIV-tuberculosis coinfected populations, Proc. Natl. Acad. Sci., 103, 18, 7042-7047 (2006)
[5] Corbett, E. L.; Charalambous, S.; Moloi, V. M., Human immunodeficiency virus and the prevalence of undiagnosed tuberculosis in African gold miners, Am. J. Respir. Care Med., 170, 673-679 (2004)
[6] Corbett, E. L.; Watt, C. J.; Walker, N.; Maher, D.; Williams, B. G.; Raviglione, M. C.; Dye, C., The growing burden of tuberculosis: global trends and interactions with the HIV epidemic, Arch. Intern. Med., 163, 1009-1021 (2003)
[7] Currie, C. S.M.; Williams, B. G.; Cheng, R. C.H.; Dye, C., Tuberculosis epidemics driven by HIV: is prevention better than cure?, AIDS, 17, 2501-2508 (2003)
[8] Currie, C. S.M.; Floyd, K.; Williams, B. G.; Dye, C., Cost, affordability and cost-effectiveness of strategies to control tuberculosis in countries with high HIV prevalence, BMC Public Health, 5, 130 (2005)
[9] Daley, D. J.; Vere-Jones, D., An Introduction to the Theory of Point Processes: General Theory and Structure (2003), Springer · Zbl 1026.60061
[10] Dye, C.; Garnett, G. P.; Sleeman, K.; Williams, B. G., Prospects for worldwide tuberculosis control under the WHO DOTS strategy, Lancet, 352, 1886-1891 (1998)
[11] Gillespie, D., Exact stochastic simulation of coupled chemical reactions, J. Phys. Chem., 81, 25, 2340-2361 (1979)
[12] Glynn, J. R.; Vynnycky, E.; Fine, P. E.M., Influence of sampling on estimates of clustering and recent transmission of Mycobacterium tuberculosis derived from DNA fingerprinting techniques, Am. J. Epidemiol., 149, 4 (1999)
[13] Hughes, C.R., Currie, C.S.M., Corbett, E.L., 2006. Modeling tuberculosis in areas of high HIV prevalence. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (Eds.), Proceedings of the 2006 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 459-465.; Hughes, C.R., Currie, C.S.M., Corbett, E.L., 2006. Modeling tuberculosis in areas of high HIV prevalence. In: Perrone, L.F., Wieland, F.P., Liu, J., Lawson, B.G., Nicol, D.M., Fujimoto, R.M. (Eds.), Proceedings of the 2006 Winter Simulation Conference, Institute of Electrical and Electronics Engineers, Piscataway, NJ, pp. 459-465.
[14] Kurtz, T. G., Limit theorems for sequences of jump Markov processes approximating ordinary differential processes, J. Appl. Prob., 8, 2, 344-356 (1971) · Zbl 0219.60060
[15] Kurtz, T. G., The central limit theorem for Markov chains, Ann. Probab., 9, 4, 557-560 (1981) · Zbl 0478.60034
[16] Lawn, S. D.; Bekker, L.-G.; Middelkoop, K.; Myer, L.; Wood, R., Impact of HIV infection on the epidemiology of tuberculosis in a peri-urban community in South Africa: the need for age-specific interventions, Clin. Infect. Dis., 42, 1040-1047 (2006)
[17] Lungu, E., 2007. Anti-tuberculosis resistance in patients co-infected with HIV and TB. Abstract presented at CMS-MITACS Joint Conference, Winnipeg, Manitoba, Canada, May 31-June \(3 \langle\) www.math.ca/Reunions/ete07/abs/pdf/id-el.pdf \(\rangle \); Lungu, E., 2007. Anti-tuberculosis resistance in patients co-infected with HIV and TB. Abstract presented at CMS-MITACS Joint Conference, Winnipeg, Manitoba, Canada, May 31-June \(3 \langle\) www.math.ca/Reunions/ete07/abs/pdf/id-el.pdf \(\rangle \)
[18] McKane, J.; Newman, T. J., Stochastic models in population biology and their deterministic analogs, Phys. Rev. E, 70, 4, 041902 (2004)
[19] Middelkoop, K.; Bekker, L.-G.; Myer, L.; Dawson, R.; Wood, R., Rates of tuberculosis transmission to children and adolescents in a community with a high prevalence of HIV infection among adults, Clin. Infect. Dis., 47, 349-355 (2008)
[20] Middelkoop, K.; Bekker, L.-G.; Mathema, B.; Shashkina, E., Molecular Epidemiology of Mycobacterium tuberculosis in a South African Community with high HIV prevalence, J. Infect. Dis., 200, 5, 1207-1211 (2009)
[21] Moghadas, S. M.; Gumel, A. B., An epidemic model for the transmission dynamics of HIV and another pathogen, ANZIAM J., 45, 1-13 (2003) · Zbl 1037.92035
[22] Murray, M., Determinants of cluster distribution in the molecular epidemiology of tuberculosis, Proc. Natl. Acad. Sci., 99, 3, 1538-1543 (2002)
[23] Murray, C. J.L.; Salomon, J. A., Modeling the impact of global tuberculosis control strategies, Proc. Natl. Acad. Sci. USA, 95, 23, 13881-13886 (1998)
[24] Naresh, R.; Tripathi, A., Modelling and analysis of HIV-TB coinfection in a variable size population, Math. Model. Anal., 10, 275-286 (2005) · Zbl 1082.92030
[25] Plischke, M.; Bergersen, B., Equilibrium Statistical Physics (2006), World Scientific · Zbl 1130.82001
[26] Raimundo, S. M.; Engel, A. B.; Yang, H. M.; Bassanezi, R. C., An approach to estimating the transmission coefficients for AIDS and for tuberculosis using mathematical models, Syst. Anal. Model. Simul., 43, 423-442 (2003) · Zbl 1057.92047
[27] Raimundo, S. M.; Yang, H. M.; Bassanezi, R. C.; Ferreira, M. A.C., The attracting basins and the assessment of the transmission coefficients for HIV and M. tuberculosis infections among women inmates, J. Biol. Syst., 10, 61-83 (2002) · Zbl 1099.92039
[28] Schulzer, M.; Fitzgerald, J. M.; Enarson, D. A.; Grzybowski, S., An estimate of the future size of the tuberculosis problem in sub-Saharan Africa resulting from HIV infection, Tuber. Lung. Dis., 73, 52-58 (1992)
[29] Selwyn, P. A.; Hartel, D.; Lewis, V. A.; Schoenbaum, E. E.; Vermund, S. H.; Klein, R. S.; Walker, A. T.; Friedland, G. H., A prospective study of the risk of tuberculosis among intravenous drug users with human immunodeficiency virus infection, N. Engl. J. Med., 320, 545-550 (1989)
[30] Selwyn, P. A.; Sckell, B. M.; Alcabes, P.; Friedland, G. H.; Klein, R. S.; Schoenbaum, E. E., High risk of active tuberculosis in HIV-infected drug users with cutaneous anergy, J. Am. Med. Assoc., 268, 4, 504-509 (1992)
[31] van Kampen, N. G., Stochastic Processes in Physics and Chemistry (1992), North-Holland · Zbl 0511.60038
[32] van Kampen, N. G., The expansion of the master equation, Adv. Chem. Phys., 34, 245-309 (1973)
[33] Vynnycky, E.; Borgdorf, M. W.; Leung, C. C.; Tam, C. M.; Fine, P. E., Limited impact of tuberculosis control in Hong Kong: attributable to high risks of reactivation disease, Epidemiol. Infect., 136, 943-952 (2008)
[34] Vynnycky, E.; Fine, P. E.M., The natural history of tuberculosis: the implications of age-dependent risks of disease and the role of reinfection, Epidemiol. Infect., 119, 183-201 (1997)
[35] Walls, D. F.; Milburn, G. J., Quantum Optics (2003), Springer · Zbl 1138.81586
[36] West, R. W.; Thompson, J. R., Modeling the impact of HIV on the spread of tuberculosis in the United States, Math. Biosci., 143, 35-60 (1997) · Zbl 0905.92028
[37] Wood, R.; Middelkoop, K.; Myer, L.; Grant, A. D.; Whitelaw, A.; Lawn, S. D.; Kaplan, G.; Huebner, R.; McIntyre, J.; Bekker, L. G., Undiagnosed tuberculosis in a community with high HIV-prevalence: implications for TB control, Am. J. Respir. Crit. Care, 175, 87-93 (2007)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.