×

Graphical tensor product reduction scheme for the Lie algebras \(so(5)=sp(2)\), \(su(3)\), and \(g(2)\). (English) Zbl 1380.17011

Summary: We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras \(so(5)=sp(2)\), \(su(3)\), and \(g(2)\). This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a “landscape” of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic “girdle” method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.

MSC:

17B20 Simple, semisimple, reductive (super)algebras
17B10 Representations of Lie algebras and Lie superalgebras, algebraic theory (weights)
17B81 Applications of Lie (super)algebras to physics, etc.
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Ne’eman, Y., Nuclear Phys., 26, 222 (1961)
[2] Gell-Mann, M., Phys. Rev., 125, 1067 (1962)
[4] Gross, D. J.; Wilczek, F., Phys. Rev. Lett., 30, 1343 (1973)
[5] Politzer, H. D., Phys. Rev. Lett., 30, 1346 (1973)
[6] Fritzsch, H.; Gell-Mann, M.; Leutwyler, H., Phys. Lett. B, 47, 365 (1973)
[7] Behrends, R. E.; Dreitlein, J.; Fronsdal, C.; Lee, W., Rev. Modern Phys., 34, 1 (1962)
[8] Bilal, A.; Derendinger, J.-P.; Sfetsos, K., Nuclear Phys. B, 628, 112 (2002)
[9] Eguchi, T.; Sugawara, Y., Nuclear Phys. B, 630, 132 (2002)
[10] Nishino, H.; Rajpoot, S., J. High Energy Phys., 0404, 020 (2004)
[11] Lu, H.; Pope, C. N.; Stelle, K. S.; Townsend, P. K., J. High Energy Phys., 0410, 019 (2004)
[12] Holland, K.; Minkowski, P.; Pepe, M.; Wiese, U.-J., Nuclear Phys. B, 668, 207 (2003)
[13] Pepe, M.; Wiese, U.-J., Nuclear Phys. B, 768, 21 (2007)
[14] Liptak, L.; Olejnik, S., Phys. Rev. D, 78, Article 074501 pp. (2008)
[15] Wellegehausen, B. H.; Wipf, A.; Wozar, C., Phys. Rev. D, 83, Article 016001 pp. (2011)
[16] Bruno, M.; Caselle, M.; Panero, M.; Pellegrini, R., J. High Energy Phys., 1503, 057 (2015)
[17] Holland, K.; Pepe, M.; Wiese, U.-J., Nuclear Phys. B, 694, 35 (2004)
[18] Zhang, S.-C., Science, 275, 1089 (1997)
[19] Demler, E.; Hanke, W.; Zhang, S.-C., Rev. Modern Phys., 76, Article 909974 pp. (2004)
[20] Hamermesh, M., Group Theory and its Applications to Physical Problems (1962), Addison-Wesley Publishing Company Inc.: Addison-Wesley Publishing Company Inc. New York · Zbl 0151.34101
[21] Georgi, H., Lie Algebras in Particle Physics (1999), Perseus Books
[22] Girardivi, G.; Sciarrino, A.; Sorba, P., Physica A, 114, 365 (1982)
[23] Antoine, J.-P.; Speiser, D., J. Math. Phys., 5, 1226 (1964)
[24] Antoine, J.-P.; Speiser, D., J. Math. Phys., 5, 1560 (1964)
[25] Belinfante, J. G.; Kolman, B., SIAM Rev., 11, 510 (1969)
[26] Feger, R.; Kephart, T. W., Comput. Phys. Commun., 192, 166 (2015)
[27] Klimyk, A. U., Amer. Math. Soc. Transl. Ser. 2, 76, 63 (1967)
[28] O’Reilly, M. F., J. Math. Phys., 23, 2022 (1982)
[29] Pan, F.; Draayer, J. P., J. Math. Phys., 39, 5631 (1998)
[30] Pan, F.; Draayer, J. P., J. Math. Phys., 39, 5642 (1998)
[31] Wesselen, M. S.M., J. Math. Phys., 49, Article 073506 pp. (2008)
[32] Holod, P. I.; Klimyk, A. U., The Mathematical Foundations of Symmetry (1992), Naukova Dumka: Naukova Dumka Kyiv, (in Ukrainian)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.