×

zbMATH — the first resource for mathematics

Effective field theory, past and future. (English) Zbl 1336.81007

MSC:
81-02 Research exposition (monographs, survey articles) pertaining to quantum theory
81V22 Unified quantum theories
81R05 Finite-dimensional groups and algebras motivated by physics and their representations
81R40 Symmetry breaking in quantum theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] 1. S. Weinberg, Physica A96, 327 (1979). genRefLink(16, ’S0217751X16300076BIB001’, ’10.1016%252F0378-4371%252879%252990223-1’); genRefLink(128, ’S0217751X16300076BIB001’, ’A1979HB23700034’); genRefLink(64, ’S0217751X16300076BIB001’, ’1979PhyA...96..327W’);
[2] 2. Y. Nambu, Phys. Rev. Lett.4, 380 (1960). genRefLink(16, ’S0217751X16300076BIB002’, ’10.1103%252FPhysRevLett.4.380’); genRefLink(128, ’S0217751X16300076BIB002’, ’A1960WQ68000019’); genRefLink(64, ’S0217751X16300076BIB002’, ’1960PhRvL...4..380N’);
[3] 3. J. Goldstone, Nuovo Cimento 9, 154 (1961); Y. Nambu and G. Jona-Lasinio, Phys. Rev. 122, 345 (1961); J. Goldstone, A. Salam and S. Weinberg, Phys. Rev. 127, 965 (1962).
[4] 4. M. L. Goldberger and S. B. Treiman, Phys. Rev.111, 354 (1956). genRefLink(16, ’S0217751X16300076BIB004’, ’10.1103%252FPhysRev.111.354’); genRefLink(128, ’S0217751X16300076BIB004’, ’A1958WB75000054’); genRefLink(64, ’S0217751X16300076BIB004’, ’1958PhRv..111..354G’);
[5] 5. Y. Nambu and D. Lurie, Phys. Rev. 125, 1429 (1962); Y. Nambu and E. Shrauner, Phys. Rev. 128, 862 (1962).
[6] 6. The name may be due to Murray Gell-Mann. The current commutation relations were given in M. Gell-Mann, Physics 1, 63 (1964).
[7] 7. S. L. Adler, Phys. Rev. Lett. 14, 1051 (1965); Phys. Rev. 140, B736 (1965); W. I. Weisberger, Phys. Rev. Lett. 14, 1047 (1965).
[8] 8. I emphasized this point in my rapporteur’s talk on current algebra at the 1968 ”Rochester” conference; see Proceedings of the 14th International Conference on High-Energy Physics, p. 253.
[9] 9. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966). The pion-nucleon scattering lengths were calculated independently by Y. Tomozawa, Nuovo Cimento A 46, 707 (1966).
[10] 10. M. L. Goldberger, Y. Miyazawa and R. Oehme, Phys. Rev.99, 986 (1955). genRefLink(16, ’S0217751X16300076BIB010’, ’10.1103%252FPhysRev.99.986’); genRefLink(128, ’S0217751X16300076BIB010’, ’A1955WB70400051’); genRefLink(64, ’S0217751X16300076BIB010’, ’1955PhRv...99..986G’);
[11] 11. S. Weinberg, Phys. Rev.140, B516 (1965). genRefLink(16, ’S0217751X16300076BIB011’, ’10.1103%252FPhysRev.140.B516’); genRefLink(128, ’S0217751X16300076BIB011’, ’A19656923200036’); genRefLink(64, ’S0217751X16300076BIB011’, ’1965PhRv..140..516W’);
[12] 12. S. Weinberg, Phys. Rev. Lett.16, 879 (1966). genRefLink(16, ’S0217751X16300076BIB012’, ’10.1103%252FPhysRevLett.16.879’); genRefLink(128, ’S0217751X16300076BIB012’, ’A19667660100015’); genRefLink(64, ’S0217751X16300076BIB012’, ’1966PhRvL..16..879W’);
[13] 13. J. Bernstein, S. Fubini, M. Gell-Mann and W. Thirring, Nuovo Cimento 17, 757 (1960); M. Gell-Mann and M. Lévy, Nuovo Cimento 16, 705 (1960); K. C. Chou, Soviet Physics JETP 12, 492 (1961). This theory, with the inclusion of a symmetry-breaking term proportional to the \(\sigma\) field, was intended to provide an illustration of a ”partially conserved axial current,” that is, one whose divergence is proportional to the pion field. · Zbl 0095.43603
[14] 14. For Schwinger’s own development of this idea, see J. Schwinger, Phys. Lett. B 24, 473 (1967). It is interesting that in deriving the effective field theory of goldstinos in supergravity theories, it is much more transparent to start with a theory with linearly realized supersymmetry and impose constraints analogous to setting \(\sigma\)’=F/2, than to work from the beginning with supersymmetry realized non-linearly, in analogy to Eq. (7); see Z. Komargodski and N. Seiberg, to be published.
[15] 15. S. Weinberg, Phys. Rev.166, 1568 (1968). genRefLink(16, ’S0217751X16300076BIB015’, ’10.1103%252FPhysRev.166.1568’); genRefLink(128, ’S0217751X16300076BIB015’, ’A1968A745700037’); genRefLink(64, ’S0217751X16300076BIB015’, ’1968PhRv..166.1568W’);
[16] 16. S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2239 (1969); C. G. Callan, S. Coleman, J. Wess and B. Zumino, Phys. Rev. 177, 2247 (1969).
[17] 17. There is a complication. In some cases, such as SU(3)\(\times\)SU(3) spontaneously broken to SU(3), fermion loops produce G-invariant terms in the action that are not the integrals of G-invariant terms in the Lagrangian density; see J. Wess and B. Zumino, Phys. Lett. B 37, 95 (1971); E. Witten, Nucl. Phys. B 223, 422 (1983). The most general such terms in the action, whether or not produced by fermion loops, have been cataloged by E. D’Hoker and S. Weinberg, Phys. Rev. D 50, R6050 (1994). It turns out that for SU(N)\(\times\)SU(N) spontaneously broken to the diagonal SU(N), there is just one such term for N, and none for N=1 or 2. For N=3, this term is the one found by Wess and Zumino.
[18] 18. For reviews, see S. Weinberg, in Lectures on Elementary Particles and Quantum Field Theory – 1970 Brandeis University Summer Institute in Theoretical Physics, Vol. 1, eds. S. Deser, M. Grisaru and H. Pendleton (The M.I.T. Press, Cambridge, MA, 1970); B. W. Lee, Chiral Dynamics (Gordon and Breach, New York, 1972).
[19] 19. For a while it was not clear why there was not also a chiral U(1) symmetry, that would also be broken in the Lagrangian only by the quark masses, and would either lead to a parity doubling of observed hadrons, or to a new light pseudoscalar neutral meson, both of which possibilities were experimentally ruled out. It was not until 1976 that ’t Hooft pointed out that the effect of triangle anomalies in the presence of instantons produced an intrinsic violation of this unwanted chiral U(1) symmetry; see G. ’t Hooft, Phys. Rev. D 14, 3432 (1976).
[20] 20. S. Weinberg, ” Critical Phenomena for Field Theorists,” in Understanding the Fundamental Constituents of Matter, ed. A. Zichichi (Plenum Press, New York, 1977).
[21] 21. I thought it is appropriate to publish this in a festschrift for Julian Schwinger; see footnote 1.
[22] 22. Unitarity corrections to soft-pion results of current algebra had been considered earlier by L.-F. Li and H. Pagels, Phys. Rev. Lett. 26, 1204 (1971); Phys. Rev. D 5, 1509 (1972); P. Langacker and H. Pagels, Phys. Rev. D 8, 4595 (1973).
[23] 23. S. Weinberg, contribution to a festschrift for I. I. Rabi, Trans. N. Y. Acad. Sci. 38, 185 (1977).
[24] 24. S. Weinberg, in Chiral Dynamics: Theory and Experiment – Proceedings of the Workshop, held at MIT, July 1994 (Springer-Verlag, Berlin, 1995). The terms in Eq. (13) that are odd in the pion field are given in Section 19.5 ofS. Weinberg, The Quantum Theory of Fields, Vol. II (Cambridge University Press, 1996).
[25] 25. S. Weinberg, Phys. Lett. B 251, 288 (1990); Nucl. Phys. B 363, 3 (1991); Phys. Lett. B 295, 114 (1992).
[26] 26. C. Ordoñez and U. van Kolck, Phys. Lett. B 291, 459 (1992); C. Ordoñez. L. Ray and U. van Kolck, Phys. Rev. Lett. 72, 1982 (1994); U. van Kolck, Phys. Rev. C 49, 2932 (1994); U. van Kolck, J. Friar and T. Goldman, Phys. Lett. B 371, 169 (1996); C. Ordoñez, L. Ray and U. van Kolck, Phys. Rev. C 53, 2086 (1996); C. J. Friar, Few-Body Systems Suppl. 99, 1 (1996).
[27] 27. G. Benfatto and G. Gallavotti, J. Stat. Phys. 59, 541 (1990); Phys. Rev. 42, 9967 (1990); J. Feldman and E. Trubowitz, Helv. Phys. Acta 63, 157 (1990); 64, 213 (1991); 65, 679 (1992); R. Shankar, Physica A 177, 530 (1991); Rev. Mod. Phys. 66, 129 (1993); J. Polchinski, in Recent Developments in Particle Theory, Proceedings of the 1992 TASI, eds. J. Harvey and J. Polchinski (World Scientific, Singapore, 1993); S. Weinberg, Nucl. Phys. B 413, 567 (1994).
[28] 28. C. Cheung, P. Creminilli, A. L. Fitzpatrick, J. Kaplan and L. Senatore, J. High Energy Physics 0803, 014 (2008); S. Weinberg, Phys. Rev. D 73, 123541 (2008).
[29] 29. F. Wilczek, Phys. Rev. Lett.43, 1570 (1979). genRefLink(16, ’S0217751X16300076BIB029’, ’10.1103%252FPhysRevLett.43.1571’); genRefLink(128, ’S0217751X16300076BIB029’, ’A1979HU10800009’);
[30] 30. S. Weinberg, Phys. Rev. Lett.43, 1566 (1979). genRefLink(16, ’S0217751X16300076BIB030’, ’10.1103%252FPhysRevLett.43.1566’); genRefLink(128, ’S0217751X16300076BIB030’, ’A1979HU10800008’); genRefLink(64, ’S0217751X16300076BIB030’, ’1979PhRvL..43.1566W’);
[31] 31. This is not true if the effective theory contains fields for the squarks and sleptons of supersymmetry. However, there are no renormalizable baryon or lepton violating terms in ”split supersymmetry” theories, in which the squarks and sleptons are superheavy, and only the gauginos and perhaps higgsinos survive to ordinary energies; see N. Arkani-Hamed and S. Dimopoulos, JHEP 0506, 073 (2005); G. F. Giudice and A. Romanino, Nucl. Phys. B 699, 65 (2004); N. Arkani-Hamed, S. Dimopoulos, G. F. Giudice and A. Romanino, Nucl. Phys. B 709, 3 (2005); A. Delgado and G. F. Giudice, Phys. Lett. B 627, 155 (2005).
[32] 32. The effective field theories derived by integrating out heavy particles had been considered by T. Appelquist and J. Carrazone, Phys. Rev. D 11, 2856 (1975). In 1980, in a paper titled ”Effective Gauge Theories,” I used the techniques of effective field theory to evaluate the effects of integrating out the heavy gauge bosons in grand unified theories on the initial conditions for the running of the gauge couplings down to accessible energies: S. Weinberg, Phys. Lett. B 91, 51 (1980).
[33] 33. J. F. Donoghue, Phys. Rev. D 50, 3874 (1884); Phys. Lett. 72, 2996 (1994); lectures presented at the Advanced School on Effective Field Theories (Almunecar, Spain, June 1995), arXiv:gr-qc/9512024; J. F. Donoghue, B. R. Holstein, B. Garbrecth and T. Konstandin, Phys. Lett. B 529, 132 (2002); N. E. J. Bjerrum-Bohr, J. F. Donoghue and B. R. Holstein, Phys. Rev. D 68, 084005 (2003).
[34] 34. This was first proposed in my 1976 Erice lectures; see footnote 20.
[35] 35. S. Weinberg, in General Relativity, eds. S. W. Hawking and W. Israel (Cambridge University Press, 1979), p. 700; H. Kawai, Y. Kitazawa and M. Ninomiya, Nucl. Phys. B 404, 684 (1993); Nucl. Phys. B 467, 313 (1996); T. Aida and Y. Kitazawa, Nucl. Phys. B 401, 427 (1997); M. Niedermaier, Nucl. Phys. B 673, 131 (2003).
[36] 36. L. Smolin, Nucl. Phys. B 208, 439 (1982); R. Percacci, Phys. Rev. D 73, 041501 (2006).
[37] 37. J. Ambjørn, J. Jurkewicz and R. Loll, Phys. Rev. Lett. 93, 131301 (2004); Phys. Rev. Lett. 95, 171301 (2005); Phys. Rev. D 72, 064014 (2005); Phys. Rev. D 78, 063544 (2008); and in Approaches to Quantum Gravity, ed. D. Oríti (Cambridge University Press).
[38] 38. M. Reuter, Phys. Rev. D 57, 971 (1998); D. Dou and R. Percacci, Class. Quantum Grav. 15, 3449 (1998); W. Souma, Prog. Theor. Phys. 102, 181 (1999); O. Lauscher and M. Reuter, Phys. Rev. D 65, 025013 (2001); Class. Quantum Grav. 19, 483 (2002); M. Reuter and F. Saueressig, Phys Rev. D 65, 065016 (2002); O. Lauscher and M. Reuter, Int. J. Mod. Phys. A 17, 993 (2002); Phys. Rev. D 66, 025026 (2002); M. Reuter and F. Saueressig, Phys. Rev. D 66, 125001 (2002); R. Percacci and D. Perini, Phys. Rev. D 67, 081503 (2002); Phys. Rev. D 68, 044018 (2003); D. Perini, Nucl. Phys. C (Proc. Suppl.) 127, 185 (2004); D. F. Litim, Phys. Rev. Lett. 92, 201301 (2004); A. Codello and R. Percacci, Phys. Rev. Lett. 97, 221301 (2006); A. Codello, R. Percacci, and C. Rahmede, Int. J. Mod. Phys. A 23, 143 (2008); M. Reuter and F. Saueressig, arXiv:0708.1317; P. F. Machado and F. Saueressig, Phys. Rev. D 77, 124045 (2008); A. Codello, R. Percacci and C. Rahmede, Ann. Phys. 324, 414 (2009); A. Codello and R. Percacci, arXiv:0810.0715; D. F. Litim, arXiv:0810.3675; H. Gies and M. M. Scherer, arXiv:0901.2459; D. Benedetti, P. F. Machado and F. Saueressig, arXiv:0901.2984, arXiv:0902.4630; M. Reuter and H. Weyer, arXiv:0903.2971.
[39] 39. F. J. Wegner and A. Houghton, Phys. Rev. A8, 401 (1973). genRefLink(16, ’S0217751X16300076BIB039’, ’10.1103%252FPhysRevA.8.401’); genRefLink(128, ’S0217751X16300076BIB039’, ’A1973Q322600050’); genRefLink(64, ’S0217751X16300076BIB039’, ’1973PhRvA...8..401W’);
[40] 40. J. Polchinski, Nucl. Phys. B 231, 269 (1984); C. Wetterich, Phys. Lett. B 301, 90 (1993).
[41] 41. A. Codello, R. Percacci and C. Rahmede, Int. J. Mod. Phys. A23, 143 (2008). [Abstract] genRefLink(128, ’S0217751X16300076BIB041’, ’000252898300002’); genRefLink(64, ’S0217751X16300076BIB041’, ’2008IJMPA..23..143C’);
[42] 42. A. Codello, R. Percacci and C. Rahmede, Ann. Phys.324, 414 (2009). genRefLink(16, ’S0217751X16300076BIB042’, ’10.1016%252Fj.aop.2008.08.008’); genRefLink(128, ’S0217751X16300076BIB042’, ’000263807700011’); genRefLink(64, ’S0217751X16300076BIB042’, ’2009AnPhy.324..414C’);
[43] 43. D. Benedetti, P. F. Machado and F. Saueressig, arXiv:0901.2984, arXiv:0902.4630.
[44] 44. A. Bonanno and M. Reuter, Phys. Rev. D 65, 043508 (2002); Phys. Lett. B 527, 9 (2002); M. Reuter and F. Saueressig, J. Cosmol. Astropart. Phys. 09, 012 (2005).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.