×

Self-focusing dynamics of patches of ripples. (English) Zbl 1415.76208

Summary: The dynamics of focussing of extended patches of nonlinear capillary-gravity waves within the primitive fluid dynamic equations is presented. It is found that, when the envelope has certain properties, the patch focusses initially in accordance to predictions from nonlinear Schrödinger equation, and focussing can concentrate energy to the vicinity of a point or a curve on the fluid surface. After initial focussing, other effects dominate and the patch breaks up into a complex set of localised structures-lumps and breathers-plus dispersive radiation. We perform simulations both in the inviscid regime and for small viscosities. Lastly we discuss throughout the similarities and differences between the dynamics of ripple patches and self-focussing light beams.

MSC:

76D45 Capillarity (surface tension) for incompressible viscous fluids
37M05 Simulation of dynamical systems
37N10 Dynamical systems in fluid mechanics, oceanography and meteorology
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Benney, D. J.; Newell, A. C., Propagation of nonlinear wave envelopes, J. Math. Phys., 46, 133-139 (1967) · Zbl 0153.30301
[2] Ablowitz, M. J.; Segur, H., On the evolution of packets of water waves, J. Fluid Mech., 92, 691-715 (1979) · Zbl 0413.76009
[3] Kim, B.; Akylas, T. R., On gravity-capillary lumps, J. Fluid Mech., 540, 337-351 (2005) · Zbl 1082.76020
[4] Zakharov, V. E., Collapse of langmuir waves, Sov. Phys. IETP, 35, 5, 908-914 (1972)
[5] Zhang, X., Capillary-gravity and capillary waves generated in a wind wave tank: observations and theory, J. Fluid Mech., 289, 51-82 (1995)
[6] Părău, E. I.; Vanden-Broeck, J.-M.; Cooker, M. J., Nonlinear three-dimensional gravity-capillary solitary waves, J. Fluid Mech., 536, 99-105 (2005) · Zbl 1073.76010
[7] Manakov, V.; Zakharov, V. E.; Bordag, L. A.; Its, A. R.; Matveev, V. B., Two dimensional solitons of the kadomtsev-petviashvili equation and their interaction, Phys. Lett., 63, 205-206 (1977)
[8] Milewski, P. A., Three-dimensional localized gravity-capillary waves, Commun. Math. Sci., 3, 89-99 (2005) · Zbl 1073.76009
[9] Chiao, R. Y.; Garmire, E.; Townes, C. H., Self-trapping of optical beams, Phys. Rev. Lett., 13, 479-482 (1964)
[10] Wang, Z.; Milewski, P. A., Dynamics of gravity-capillary solitary waves in deep water, J. Fluid Mech., 480, 480-501 (2012) · Zbl 1275.76055
[11] Akers, B.; Milewski, P. A., A model equation for wavepacket solitary waves arising from capillary-gravity flows, Stud. Appl. Math., 122, 249-274 (2009) · Zbl 1173.35114
[12] Diorio, J.; Cho, Y.; Duncan, J. H.; Akylas, T. R., Gravity-capillary lumps generated by a moving pressure source, Phys. Rev. Lett., 103, Article 214502 pp. (2009)
[13] Berger, K.; Milewski, P. A., The generation and evolution of lump solitary waves in surface-tension-dominated flows, SIAM J. Appl. Math., 61, 731-750 (2000) · Zbl 1136.76325
[14] Falcon, E.; Laroche, C.; Fauve, S., Observation of gravity-capillary wave turbulence, Phys. Rev. Lett., 98, Article 094503 pp. (2007)
[15] Kibler, B.; Fatome, J.; Finot, C.; Millot, G.; Dias, F.; Genty, G.; Akhmediey, N.; Dudley, J., The peregrine soliton in nonlinear fibre optics, Nat. Phys., 6, 790-795 (2010)
[16] Fatome, J.; Finot, C.; Millot, G.; Armaroli, A.; Trillo, S., Observation of optical undular bores in multiple four-wave mixing, Phys. Rev. X, 4, 2, Article 021022 pp. (2014)
[17] Moll, K. D.; Gaeta, A. L.; Fibich, G., Self-similar optical wave collapse: Observation of the townes profile, Phys. Rev. Lett., 90, Article 203902 pp. (2003)
[18] Fibich, G.; Gavish, N.; Wang, X.-P., New singular solutions of the nonlinear schrödinger equation, Physica D, 211, 193-220 (2005) · Zbl 1105.35114
[19] Grow, T. D.; Ishaava, A. A.; Vuong, L. T.; Gaeta, A. L.; Gavish, N.; Fibich, G., Collapse dynamics of super-gaussian beams, Opt. Express, 14, 12, 5468-5475 (2006)
[21] Bennett, P. M.; Aceves, A., Numerical integration of Maxwell’s full-vector equations in nonlinear focusing media, Physica D, 184, 1-4, 352-375 (2003) · Zbl 1030.78013
[22] Dias, F.; Dyachenko, A. I.; Zakharov, V. E., Theory of weakly damped free-surface flows: A new formulation based on potential flow solutions, Phys. Lett. A, 372, 1297-1302 (2008) · Zbl 1217.76018
[23] Fibich, G., Self-focusing in the damped nonlinear schrödinger equation, SIAM J. Appl. Math., 65, 1680-1705 (2001) · Zbl 0987.78018
[24] Ohta, M.; Todorova, G., Remarks on global existence and blowup for damped nonlinear schrödinger equation, Discrete Contin. Dyn. Syst., 23, 1313-1325 (2009) · Zbl 1155.35456
[25] Pérez-García, V. M.; Porras, M. A.; Vázquez, L., The nonlinear schrödinger equation with dissipation and the moment method, Phys. Lett. A, 202, 176-182 (1995)
[26] Huang, N.; Shen, Z.; Long, S., A new view of nonlinear water waves: the hilbert spectrum, Annu. Rev. Fluid Mech., 31, 417-475 (1999)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.