×

zbMATH — the first resource for mathematics

Dissipative solutions for the modified two-component Camassa-Holm system. (English) Zbl 1310.35080
Summary: Camassa-Holm model is capable of characterizing the dynamic behavior of shallow water wave, thus has been extensively studied. This paper is concerned with shallow water wave behavior after wave breaking. To better reflect the whole process, the modified two-component Camassa-Holm system is considered. The continuation of solutions of such system after wave braking is investigated. By introducing a skillfully defined characteristic, together with a set of newly defined variables, the original system is converted into a Lagrangian equivalent system, from which global dissipative solutions are obtained. The results obtained herein are deemed useful in understanding the dynamic behavior of shallow water wave during and after wave breaking.

MSC:
35G55 Initial value problems for systems of nonlinear higher-order PDEs
35L65 Hyperbolic conservation laws
35L40 First-order hyperbolic systems
35Q35 PDEs in connection with fluid mechanics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Holm, D.; Naraigh, L.; Tronci, C., Singular solution of a modified two-component Camassa-Holm equation, Phys. Rev. E, 79, 1-13, (2009)
[2] Chen, M.; Liu, S.-Q.; Zhang, Y., A 2-component generalization of the Camassa-Holm equation and its solutions, Lett. Math. Phys., 75, 1-15, (2006) · Zbl 1105.35102
[3] Constantin, A.; Ivanov, R., On an integrable two-component Camassa-Holm shallow water system, Phys. Lett. A, 372, 7129-7132, (2008) · Zbl 1227.76016
[4] Holm, D.; Marsden, J.; Ratiu, T., The Euler-PoincarĂ© equations and semidirect products with applications to continuum theories, Adv. Math, 137, 1-81, (1998) · Zbl 0951.37020
[5] Constantin, A., The Hamiltonian structure of the Camassa-Holm equation, Expo. Math, 15, 53-85, (1997)
[6] Camassa, R.; Holm, D., An integrable shallow water equation with peaked solitons, Phys. Rev. Lett, 71, 1661-1664, (1993) · Zbl 0972.35521
[7] Constantin, A., On the scattering problem for the Camassa-Holm equation, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 457, 953-970, (2001) · Zbl 0999.35065
[8] Dullin, H.; Gottwald, G.; Holm, D., An integral shallow water equation with linear and nonlinear dispersion, Phys. Rev. Lett., 87, 4501-4504, (2001)
[9] Constantin, A.; Lannes, D., The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations, Arch. Ration. Mech. Anal, 192, 165-186, (2009) · Zbl 1169.76010
[10] Constantin, A.; Escher, J., Wave breaking for nonlinear nonlocal shallow water equations, Acta Math., 181, 229-243, (1998) · Zbl 0923.76025
[11] Constantin, A., Global existence of solutions and breaking waves for a shallow water equation: a geometric approach, Ann. Inst. Fourier (Grenoble), 50, 321-362, (2000) · Zbl 0944.35062
[12] Bressan, A.; Constantin, A., Global conservative solutions of the Camassa-Holm equation, Arch. Ration. Mech. Anal, 183, 215-239, (2007) · Zbl 1105.76013
[13] Holden H., Raynaud X.: Global conservative solutions of the Camassa-Holm equation-a Lagrangian point of view. Comm. P. D. E 32, 11511-1549 (2007) · Zbl 1136.35080
[14] Holden, H.; Raynaud, X., Periodic conservative solutions of the Camassa-Holm equation, Ann. Inst. Fourier (Grenoble), 58, 945-988, (2008) · Zbl 1158.35079
[15] Holden, H.; Raynaud, X., Global conservative multipeakon solutions of the Camassa-Holm equation, J. Hyperbolic Differ. Equ., 4, 39-64, (2007) · Zbl 1128.65065
[16] Bressan, A.; Constantin, A., Global dissipative solutions of the Camassa-Holm equation, Appl. Anal., 5, 1-27, (2007) · Zbl 1139.35378
[17] Holden, H.; Raynaud, X., Dissipative solutions for the Camassa-Holm equation, Discrete Contin. Dyn. Syst., 24, 1047-1112, (2009) · Zbl 1178.65099
[18] Holden, H.; Raynaud, X., Global dissipative multipeakon solutions of the Camassa-Holm equation, Communications in P.D.E, 33, 2040-2063, (2008) · Zbl 1156.76014
[19] Lv, G.; Wang, M., Some remarks for a modified periodic Camassa-Holm system, Discrete Contin. Dyn. Syst., 30, 1161-1180, (2011) · Zbl 1241.35170
[20] Guan, C.; Karlsen, K.H.; Yin, Z., Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation, nonlinear partial differential equations and hyperbolic wave phenomena, Contemp. Math., 526, 199-220, (2010) · Zbl 1213.35133
[21] Tan W., Yin Z.: Global dissipative solutions of a modified two-component Camassa-Holm shallow water system. J. Math. Phys. 52:033507 (2011) · Zbl 1315.76013
[22] Tan, W.; Yin, Z., Global conservative solutions of a modified two-component Camassa-Holm shallow water system, J. Differ. Equ., 251, 3558-3582, (2011) · Zbl 1231.35048
[23] Tan, W.; Yin, Z., Global periodic conservative solutions of a periodic modified two-component Camassa-Holm equation, J. Funct. Anal., 261, 1204-1226, (2011) · Zbl 1220.35155
[24] He, B., New peakon, solitary wave and periodic wave solutions for the modified Camassa-Holm equation, Nonlinear Anal., 71, 6011-6018, (2009) · Zbl 1186.34005
[25] Wen, Z.; Liu, Z., Bifurcation of peakons and periodic cusp waves for the generalization of the Camassa-Holm equation, Nonlinear Anal. R.W.A, 12, 1698-1707, (2011) · Zbl 1218.35026
[26] Guo, Z.; Zhu, M., Wave breaking for a modified two-component Camassa-Holm system, J. Differ. Equ., 252, 2759-2770, (2012) · Zbl 1230.37093
[27] Jin, L., Guo, Z.: A note on a modified twocomponent CamassaHolm system Nonlinear Anal R W A 13887892 (2012)
[28] Guo, Z.; Zhu, M., Blow-up criteria of solutions to a modified two-component Camassa-Holm system, Nonlinear Anal. R. W. A., 12, 3531-3540, (2011) · Zbl 1231.35200
[29] Tian, L., Wang, Y.: Global conservative and dissipative solutions of a coupled Camassa-Holm equations. J. Math. Phys. 52:063702 (2011) · Zbl 1317.76022
[30] Wang, Y.; Huang, J., Global conservative solutions of the two-component Camassa-Holm shallow water system, Int. J. Nonlinear Sci., 9, 379-384, (2010) · Zbl 1208.35119
[31] Guan, C.; Yin, Z., Global existence and blow-up phenomena for an integrable two-component Camassa-Holm shallow water system, J. Differ. Equ, 248, 2003-2014, (2010) · Zbl 1190.35039
[32] Shen, Z., Wang, Y., Karimi, H., Song, Y.: On the multipeakon dissipative behavior of the modified coupled Camassa-Holm model for shallow water system. Mathematical Problems in Engineering http://dx.doi.org/10.1155/2013/107450 (2013) · Zbl 1296.76019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.