zbMATH — the first resource for mathematics

Regular error feedback based adaptive practical prescribed time tracking control of normal-form nonaffine systems. (English) Zbl 1411.93082
Summary: In this work, we present a control approach to achieve practical prescribed time tracking for a class of normal-form nonaffine systems with non-vanishing yet nonparametric uncertainties. We make use of a prescribed time function to perform error transformation, with which we build the control scheme upon the transferred error, ensuring that the tracking error converges to an adjustably small residual set within the prescribed time, with a bounded, continuous and \(\mathcal{C}^1\) control action. Furthermore, as the proposed control is directly built upon regular feedback of the transferred error, the settling time is independent of system initial conditions and other design parameters, thus can be pre-specified, which is essentially different from traditional finite-time controls (based upon fractional power state/error feedback). The effectiveness of the proposed control scheme is also confirmed by numerical simulation.

93B52 Feedback control
93C40 Adaptive control/observation systems
Full Text: DOI
[1] Li, H. L.; Cao, J. D.; Jiang, H.; Alsaedi, A., Graph theory-based finite-time synchronization of fractional-order complex dynamical networks, J. Frankl. Inst., 355, 5771-5789, (2018) · Zbl 06920012
[2] Chen, X.; Cao, J. D.; Park, J.; Huang, T.; Qiu, J., Finite-time multi-switching synchronization behavior for multiple chaotic systems with network transmission mode, J. Frankl. Ins., 355, 2892-2911, (2018) · Zbl 1393.93057
[3] Velmurugan, G.; Rakkiyappan, R.; Cao, J. D., Finite-time synchronization of fractionalorder memristor-based neural networks with time delays, Neural Netw., 73, 36-46, (2016) · Zbl 1398.34110
[4] Yang, X.; Wu, Z.; Cao, J. D., Finite-time synchronization of complex networks with nonidentical discontinuous nodes, Nonlinear Dyn., 73, 2313-2327, (2013) · Zbl 1281.34100
[5] Liu, X.; Cao, J. D.; Xie, C., Finite-time and fixed-time bipartite consensus of multi-agent systems under a unified discontinuous control protocol, J. Frankl. Inst., (2017)
[6] Liu, X.; Cao, J. D.; Yu, W.; Song, Q., Nonsmooth finite-time synchronization of switched coupled neural networks, IEEE Trans. Cybern., 46, 10, 2360-2371, (2016)
[7] Liu, X.; Ho, D. W.C.; Cao, J. D.; Xu, W., Discontinuous observers design for finite-time consensus of multiagent systems with external disturbances, IEEE Trans. Neural Netw. Learn. Syst., 28, 11, 2826-2830, (2017)
[8] Wang, X.; Li, S.; Shi, P., Distributed finite-time containment control for double-integrator multiagent systems, IEEE Trans. Cybern., 44, 1518-1528, (2017)
[9] Krstic, M.; Kokotovic, P. V.; Kanellakopoulos, I., Nonlinear and Adaptive Control Design, (1995), Wiley Interscience: Wiley Interscience NJ · Zbl 0763.93043
[10] Haimo, V. T., Finite time controllers, J. Control Optim., 24, 760-770, (1986) · Zbl 0603.93005
[11] Bhat, S. P.; Bernstein, D. S., Continuous finite-time stabilization of the translational and rotational double integrators, IEEE Trans. Autom. Control, 43, 678-682, (1998) · Zbl 0925.93821
[12] Cai, M. J.; Xiang, Z. R.; Guo, J., Adaptive finite-time consensus protocols for multi-agent systems by using neural networks, IET Control Theory & Appl., 10, 371-380, (2016)
[13] Hong, Y., Finite-time stabilization and stabilizability of a class of controllable systems, Syst. Control Lett., 46, 231-236, (2002) · Zbl 0994.93049
[14] Hong, Y.; Jiang, Z. P., Finite-time stabilization of nonlinear systems with parametric and dynamic uncertainties, IEEE Trans. Autom. Control, 51, 1950-1956, (2006) · Zbl 1366.93577
[15] Hong, F.; Ge, S. S.; Ren, B.; Lee, T., Robust adaptive control for a class of uncertain strict-feedback nonlinear systems, Int. J. Robust Nonlin. Control, 19, 746-767, (2009) · Zbl 1166.93334
[16] Hui, Q.; Haddad, W. M.; Bhat, S. P., Finite-time semistability and consensus for nonlinear dynamical networks, IEEE Trans. Autom. Control, 53, 1887-1900, (2008) · Zbl 1367.93434
[17] Huang, J.; Wen, C.; Wang, W.; Song, Y. D., Adaptive finite-time consensus control of a group of uncertain nonlinear mechanical systems, Automatica, 51, 292-301, (2015) · Zbl 1309.93011
[18] Liu, J.; Yu, Y.; Sun, J.; Sun, C. Y., Distributed event-triggered fixed-time consensus for leader-follower multiagent systems with nonlinear dynamics and uncertain disturbances, Int. J. Robust Nonlin. Control, 28, 3543-3559, (2018) · Zbl 1398.93020
[19] Li, S.; Du, H.; Lin, X., Finite-time consensus algorithm for multi-agent systems with double-integrator dynamics, Automatica, 47, 1706-1712, (2011) · Zbl 1226.93014
[20] Polyakov, A.; Efimov, D.; Perruquetti, W., Finite-time and fixed-time stabilization: Implicit Lyapunov function approach, Automatica, 51, 332-340, (2015) · Zbl 1309.93135
[21] Shen, Y.; Xia, X., Semi-global finite-time observers for nonlinear systems, Automatica, 44, 3152-3156, (2008) · Zbl 1153.93332
[22] Wang, L.; Feng, X., Finite-time consensus problems for networks of dynamic agents, IEEE Trans. Autom. Control, 55, 950-955, (2010) · Zbl 1368.93391
[23] Wang, Y. J.; Song, Y. D.; Krstic, M.; Wen, C., Fault-tolerant finite time consensus for multiple uncertain nonlinear mechanical systems under single-way directed communication interactions and actuation failures, Automatica, 63, 374-383, (2016) · Zbl 1329.93016
[24] Wang, Y. J.; Song, Y. D.; Krstic, M.; Wen, C., Adaptive finite time coordinated consensus for high-order multi-agent systems: adjustable fraction power feedback approach, Inf. Sci., 372, 392-406, (2016)
[25] Yu, S.; Yu, X.; Shirinzadeh, B., Continuous finite-time control for robotic manipulators with terminal sliding mode, Automatica, 41, 1957-1964, (2005) · Zbl 1125.93423
[26] Zhu, Z.; Xia, Y.; Fu, M., Attitude stabilization of rigid spacecraft with finite-time convergence, Int. J. Robust Nonlin. Control, 21, 686-702, (2011) · Zbl 1214.93100
[27] Malik, S. C., Mathematical Analysis, (1992), Wiley Interscience: Wiley Interscience NJ
[28] Song, Y. D.; Huang, X. C.; Wen, C. Y., Tracking control for a class of unknown nonsquare mimo nonaffine systems: a deep-rooted information based robust adaptive approach, IEEE Trans. Autom. Control, 61, 3227-3233, (2016)
[29] Song, Y. D.; Wang, Y. J.; Wen, C., Adaptive fault-tolerant PI tracking control with guaranteed transient and steady-state performance, IEEE Trans. Autom. Control, 62, 481-487, (2017) · Zbl 1359.93233
[30] Song, Y. D.; Wang, Y. J.; Holloway, J.; Krstic, M., Time-varying feedback for regulation of normal-form nonlinear systems in prescribed finite time, Automatica, 83, 243-251, (2017) · Zbl 1373.93136
[31] Song, Y. D.; Zhao, K.; Krstic, M., Adaptive control with exponential regulation in the absence of persistent excitation, IEEE Trans. Autom. Control, 62, 2589-2596, (2017) · Zbl 1366.93301
[32] Song, Y. D.; Zhao, K., Accelerated adaptive control of nonlinear uncertain systems, 2017 Ameri. Contr. Control, 2471-2476, (2017)
[33] Song, Y. D.; Wang, Y. J.; Krstic, M., Time-varying feedback for stabilization in prescribed finite time, Int. J. Robust Nonlin. Control, (2018)
[34] Wang, Y. J.; Song, Y. D., Fraction dynamic-surface-based beuroadaptive finite-time containment control of multiagent systems in nonaffine pure-feedback form, IEEE Trans. Neural Netw. Learn. Syst., 28, 678-689, (2017)
[35] Qian, C.; Lin, W., Non-Lipschitz continuous stabilizers for nonlinear systems with uncontrollable unstable linearization, Syst. Control Lett., 42, 185-200, (2001) · Zbl 0974.93050
[36] Chen, M.; Tao, G.; Jiang, B., Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation, IEEE Trans. Neural Netw. Learn. Syst., 26, 2086-2097, (2015)
[37] Jin, X., Fault tolerant finite-time leader-follower formation control for autonomous surface vessels with LOS range and angle constraints, Automatica, 68, 228-236, (2016) · Zbl 1334.93007
[38] Jin, X., Adaptive finite-time fault-tolerant tracking control for a class of MIMO nonlinear systems with output constraints, Int. J. Robust Nonlin. Control, 27, 722-741, (2017) · Zbl 1359.93226
[39] Jin, X., Adaptive decentralized finite-time output tracking control for MIMO interconnected nonlinear systems with output constraints and actuator faults, Int. J. Robust Nonlin. Control, 28, 1808-1829, (2018) · Zbl 1390.93044
[40] Zhai, Z. H.; Xia, Y. Q., Adaptive finite-time control for nonlinear teleoperation systems with asymmetric time-varying delays, Int. J. Robust Nonlin. Control, 26, 2586-2607, (2016) · Zbl 1346.93226
[41] Polyakov, A., Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE Trans. Autom. Control, 57, 2106-2110, (2012) · Zbl 1369.93128
[42] Zuo, Z., Nonsingular fixed-time consensus tracking for second-order multi-agent networks, Automatica, 54, 305-309, (2015) · Zbl 1318.93010
[43] Zuo, Z., Non-singular fixed-time terminal sliding mode control of nonlinear systems, IET Control Theory Appl., 9, 545-552, (2014)
[44] Zhao, K.; Song, Y. D.; Qian, J.; Fu, J., Zero-error tracking control with pre-assignable convergence mode for nonlinear systems under nonvanishing uncertainties and unknown control direction, Syst. Control Lett., 115, 34-40, (2018) · Zbl 1390.93310
[45] Zhao, K.; Song, Y. D.; Ma, T.; He, L., Prescribed performance control of uncertain euler-lagrange systems subject to full-state constraints, IEEE Trans. Neural Netw. Learn. Syst., 29, 3478-3489, (2018)
[46] Zhang, Z.; Duan, G. R.; Hu, Y., Robust adaptive control for a class of semi-strict feedback systems with state and input constraints, Int. J. Robust Nonlin. Control, 28, 3189-3211, (2018) · Zbl 1396.93048
[47] Hardy, G. H.; Littlewood, J. E.; Polya, G., Inequalities, (1952), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0047.05302
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.