×

Two-dimensional extension of variance-based thresholding for image segmentation. (English) Zbl 1328.94014

Summary: Variance-based thresholding method is a very effective technology for image segmentation. However, its performance is limited in traditional one-dimensional and two-dimensional scheme. In this paper, a novel two-dimensional variance thresholding scheme to improve image segmentation performance is proposed. The two-dimensional histogram of the original and local average image is projected to one-dimensional space in the proposed scheme firstly, and then the variance-based criterion is constructed for threshold selection. The experimental results on bi-level and multilevel thresholding for synthetic and real-world images demonstrate the success of the proposed image thresholding scheme, as compared with the Otsu method, the two-dimensional Otsu method and the minimum class variance thresholding method.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory

Software:

BrainWeb
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Arifin A., Asano A. (2006) Image segmentation by histogram thresholding using hierarchical cluster analysis. Pattern Recognition Letters 27(13): 1515-1521 · doi:10.1016/j.patrec.2006.02.022
[2] Bardera A., Boada I., Feixas M., Sbert M. (2009) Image segmentation using excess entropy. Journal of Signal Processing Systems 54(1-3): 205-214 · doi:10.1007/s11265-008-0194-6
[3] Clerc M., Kennedy J. (2002) The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6(1): 58-73 · doi:10.1109/4235.985692
[4] Cocosco C., Kollokian V., Kwan R.-S., Pike G., Evans A. (1997) BrainWeb: Online interface to a 3D MRI simulated brain database. NeuroImage 5(4): S425
[5] Fan J., Zhao F. (2007) Two-dimensional Otsu’s curve thresholding segmentation method for gray-level images. Acta Electronica Sinica 35(4): 751-755
[6] Frery A. C., Jacobo-Berlles J. J., Gambini J., Mejail M. E. (2010) Polarimetric SAR image segmentation with B-splines and a new statistical model. Multidimensional Systems and Signal Processing 21(4): 319-342 · Zbl 1198.94027 · doi:10.1007/s11045-010-0113-4
[7] Gong J., Li L., Chen W. (1998) Fast recursive algorithms for two-dimensional thresholding. Pattern Recognition 31(3): 295-300 · doi:10.1016/S0031-3203(97)00043-5
[8] Hannah I., Patel D., Davies R. (1995) The use of variance and entropic thresholding methods for image segmentation. Pattern Recognition 28(8): 1135-1143 · doi:10.1016/0031-3203(94)00180-T
[9] Hou Z., Hu Q., Nowinski W. (2006) On minimum variance thresholding. Pattern Recognition Letters 27(14): 1732-1743 · doi:10.1016/j.patrec.2006.04.012
[10] Jansing E., Albert T., Chenoweth D. (1999) Two-dimensional entropic segmentation. Pattern Recognition Letters 20(3): 329-336 · doi:10.1016/S0167-8655(98)00151-2
[11] Liu J., Li W. (1993) The automatic thresholding of gray-level pictures via two-dimensional Otsu method. Acta Automatica Sinica 19(1): 101-105
[12] Ma L., Staunton R. (2007) A modified fuzzy C-means image segmentation algorithm for use with uneven illumination patterns. Pattern Recognition 40(11): 3005-3011 · Zbl 1118.68735 · doi:10.1016/j.patcog.2007.02.005
[13] Otsu N. (1979) A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man, and Cybernetics 9(1): 62-66 · doi:10.1109/TSMC.1979.4310076
[14] Pal N., Pal S. (1993) A review on image segmentation techniques. Pattern Recognition 26(9): 1277-1294 · doi:10.1016/0031-3203(93)90135-J
[15] Qian Y., Hu Q., Qian G., Luo S., Nowinski W. (2007) Thresholding based on variance and intensity contrast. Pattern Recognition 40(2): 596-608 · Zbl 1118.68182 · doi:10.1016/j.patcog.2006.04.027
[16] Sahoo P., Slaaf D., Albert T. (1997) Thresholding selection using a minimal histogram entropy difference. Optical Engineering 36(7): 1976-1981 · doi:10.1117/1.601404
[17] Sezgin M., Sankur B. (2004) Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic Imaging 13(1): 146-165 · doi:10.1117/1.1631315
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.