×

A second-order adaptive time filter algorithm with different subdomain variable time steps for the evolutionary Stokes/Darcy model. (English) Zbl 07772642

Summary: This paper proposes and analyzes a second-order decoupled Backward Euler method plus time filter for the evolutionary Stokes/Darcy model, which allows different variable time steps in the free fluid flow region and the porous media flow region. Furthermore, this algorithm, which is a combination of first order Backward Euler method and time filter scheme, uncouples the Stokes/Darcy model into the Stokes and Darcy problems per time step. In particular, adaptive algorithm is constructed to improve the computational efficiency. Moreover, we mainly deduce the stability and error estimation in theoretical analysis. In addition, numerical experiments are used to verify the effectiveness, second order convergence and efficiency.

MSC:

76S05 Flows in porous media; filtration; seepage
76M10 Finite element methods applied to problems in fluid mechanics
76D07 Stokes and related (Oseen, etc.) flows
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N15 Error bounds for boundary value problems involving PDEs
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Li, J.; Lin, X. L.; Chen, Z. X., Finite Volume Methods for the Incompressible Navier-Stokes Equations (2021), Springer-Verlag: Springer-Verlag Berlin, Heidelberg
[2] Li, J., Numerical Methods for the Incompressible Navier-Stokes Equations (2019), Science Press: Science Press Beijing, (in Chinese)
[3] Li, J.; Bai, Y. X.; Zhao, X., Modern Numerical Methods for Mathematical Physics Equations (2022), Science Press: Science Press Beijing, (in Chinese)
[4] Liu, X.; Li, J.; Chen, Z. X., A nonconforming virtual element method for the Stokes problem on general meshes. Comput. Methods. Appl. Mech. Eng., 15, 694-711 (2017) · Zbl 1439.76085
[5] Qin, Y.; Wang, Y.; Hou, Y. R.; Li, J., An unconditionally stable artificial compression method for the time-dependent groundwater-surface water flows. Numer. Methods Partial Differ. Equ. (2023)
[6] Arbogast, T.; Brunson, D. S., A computational method for approximating a Darcy-Stokes system governing a vuggy porous medium. Comput. Geosci., 3, 207-218 (2007) · Zbl 1186.76660
[7] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows. Appl. Numer. Math., 1-2, 57-74 (2002) · Zbl 1023.76048
[8] Ervin, V. J.; Jenkins, E. W.; Sun, S., Coupled generalized nonlinear Stokes flow with flow through a porous medium. SIAM J. Numer. Anal., 2, 929-952 (2009) · Zbl 1279.76032
[9] Kanschat, G.; Riviére, B., A strongly conservative finite element method for the coupling of Stokes and Darcy flow. J. Comput. Phys., 17, 5933-5943 (2010) · Zbl 1425.76068
[10] Chen, W. B.; Chen, P. Y.; Gunzburger, M.; Yan, N. N., Superconvergence analysis of FEMs for the Stokes-Darcy system. Math. Methods Appl. Sci., 13, 1605-1617 (2010) · Zbl 1303.76086
[11] Tang, Y. Y.; Zou, G. A.; Li, J., Unconditionally energy-stable finite element scheme for the chemotaxis-fluid system. J. Sci. Comput., 1 (2023) · Zbl 1517.35185
[12] Gao, L.; Li, J., A decoupled stabilized finite element method for the Dual-Porosity-Navier-Stokes fluid flow arising in shale oil. Numer. Methods Partial Differ. Equ., 3, 2357-2374 (2020)
[13] Lipnikov, K.; Vassilev, D.; Yotov, I., Discontinuous Galerkin and mimetic finite difference methods for coupled Stokes-Darcy flows on polygonal and polyhedral grids. Numer. Math., 2, 321-360 (2014) · Zbl 1282.76139
[14] He, X. M.; Li, J.; Lin, Y. P.; Ming, J., A domain decomposition method for the steady-state Navier-Stokes-Darcy model with Beavers-Joseph interface condition. SIAM J. Sci. Comput., 5, 264-290 (2015) · Zbl 1325.76119
[15] Cao, Y. Z.; Gunzburger, M.; He, X. M.; Wang, X., Robin-Robin domain decomposition methods for the steady Stokes-Darcy model with Beaver-Joseph interface condition. Numer. Math., 4, 601-629 (2011) · Zbl 1305.76072
[16] Cao, Y. Z.; Gunzburger, M.; He, X. M.; Wang, X. M., Parallel non-iterative multi-physics domain decomposition methods for time-dependent Stokes-Darcy systems. Math. Comput., 288, 1617-1644 (2014) · Zbl 1457.65089
[17] Dawson, C. N.; Dupont, T. F., Explicit/implicit conservative domain decomposition procedures for parabolic problems based on block-centered finite differences. SIAM J. Numer. Anal., 4, 1045-1061 (1994) · Zbl 0806.65093
[18] Cao, L. L.; He, Y. N.; Li, J., A parallel Robin-Robin domain decomposition method based on modified characteristic FEMs for the time-dependent Dual-porosity-Navier-Stokes model with the Beavers-Joseph interface condition. J. Sci. Comput., 1-34 (2022) · Zbl 07435360
[19] Qiu, C. X.; He, X. M.; Li, J.; Lin, Y. P., A domain decomposition method for the time-dependent Navier-Stokes-Darcy model with Beavers-Joseph interface condition and defective boundary condition. J. Comput. Phys., 15 (2020)
[20] Gatica, G. N.; Meddahi, S.; Oyarzúa, R., A conforming mixed finite-element method for the coupling of fluid flow with porous media flow. IMA J. Numer. Anal., 1, 86-108 (2009) · Zbl 1157.76025
[21] Gatica, G. N.; Oyarzúa, R.; Sayas, F. J., A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes-Darcy coupled problem. Comput. Methods Appl. Mech. Eng., 21-22, 1877-1891 (2011) · Zbl 1228.76085
[22] Arbogast, T.; Gomez, M. S.M., A discretization and multigrid solver for a Darcy-Stokes system of three dimensional vuggy porous media. Comput. Geosci., 3, 331-348 (2009) · Zbl 1338.76047
[23] Hou, Y. R., Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Stokes-Darcy model. Appl. Math. Lett., 90-96 (2016) · Zbl 1408.76367
[24] Qin, Y.; Hou, Y. R., Optimal error estimates of a decoupled scheme based on two-grid finite element for mixed Navier-Stokes/Darcy model. Acta Math. Sci., 4, 1361-1369 (2018) · Zbl 1438.65276
[25] Zuo, L. Y.; Du, G. Z., A multi-grid technique for coupling fluid flow with porous media flow. Comput. Math. Appl., 11, 4012-4021 (2018) · Zbl 1416.76136
[26] Zuo, L. Y.; Hou, Y. R., A two-grid decoupling method for the mixed Stokes-Darcy model. J. Comput. Appl. Math., 139-147 (2015) · Zbl 1334.76157
[27] Wang, W. W.; Xu, C. J., Spectral methods based on new formulations for coupled Stokes and Darcy equations. J. Comput. Phys., 1, 126-142 (2014) · Zbl 1349.76574
[28] Hessari, P., Pseudospectral least squares method for Stokes-Darcy equations. SIAM J. Numer. Anal., 3, 1195-1213 (2015) · Zbl 1312.76046
[29] Li, R.; Gao, Y. L.; Li, J.; Chen, Z. X., Discontinuous finite volume element method for a coupled non-stationary Stokes-Darcy problem. J. Sci. Comput., 693-727 (2018) · Zbl 1394.65131
[30] Li, J.; Zeng, J. Y.; Li, Y., An adaptive discontinuous finite volume element method for the Allen-Cahn equation. Adv. Comput. Math. (2023) · Zbl 07726213
[31] Mu, M.; Zhu, X. H., Decoupled schemes for a non-stationary mixed Stokes-Darcy model. Math. Comput., 270, 707-731 (2010) · Zbl 1369.76026
[32] Qin, Y.; Hou, Y. R., The time filter for the non-stationary coupled Stokes/Darcy model. Appl. Numer. Math., 260-275 (2019) · Zbl 1448.76064
[33] Layton, W. L.; Pei, W. L.; Qin, Y.; Trenchea, C., Analysis of the variable step method of Dahlquist, Liniger and Nevanlinna for fluid flow. Numer. Methods Partial Differ. Equ., 6, 1713-1737 (2022)
[34] Qin, Y.; Hou, Y. R.; Pei, W. L.; Li, J., A variable time-stepping algorithm for the unsteady Stokes/Darcy model. J. Comput. Appl. Math. (2021) · Zbl 1465.76055
[35] Qin, Y.; Chen, L. L.; Wang, Y.; Li, Y.; Li, J., An adaptive time-stepping DLN decoupled algorithm for the coupled Stokes-Darcy model. Appl. Numer. Math., 106-128 (2023) · Zbl 1517.76049
[36] Li, Y.; Hou, Y. R.; Layton, W. J.; Zhao, H. Y., Adaptive partitioned methods for the time-accurate approximation of the evolutionary Stokes-Darcy system. Comput. Methods Appl. Mech. Eng. (2020) · Zbl 1442.76114
[37] Qin, Y.; Wang, Y.; Li, Y.; Li, J., Analysis of a new adaptive time filter algorithm for the unsteady Stokes/Darcy model. Comput. Fluids. (2023) · Zbl 1528.76044
[38] Shan, L.; Zheng, H. B.; Layton, W. J., A decoupling method with different subdomain time steps for the nonstationary Stokes-Darcy model. Numer. Methods Partial Differ. Equ., 549-583 (2013) · Zbl 1364.76096
[39] Li, Y.; Hou, Y. R., A second-order partitioned method with different subdomain time steps for the evolutionary Stokes-Darcy system. Math. Methods Appl. Sci., 5, 2178-2208 (2018) · Zbl 1392.35230
[40] Kwizak, M.; Robert, A. J., A semi-implicit scheme for grid point atmospheric models of the primitive equations. Mon. Weather Rev., 1, 32-36 (1971)
[41] Asselin, R., Frequency filter for time integrations. Mon. Weather Rev., 6, 487-490 (1972)
[42] Williams, P. D., A proposed modification to the Robert-Asselin time filter. Mon. Weather Rev., 8, 2538-2546 (2009)
[43] Williams, P. D., The RAW filter: an improvement to the Robert-Asselin filter in semi-implicit integrations. Mon. Weather Rev., 6, 1996-2007 (2011)
[44] Williams, P. D., Achieving seventh-order amplitude accuracy in leapfrog integrations. Mon. Weather Rev., 9, 3037-3051 (2013)
[45] DeCaria, V.; Layton, W. J.; Zhao, H. Y., A time-accurate, adaptive discretization for fluid flow problems (2018), arXiv preprint
[46] Guzel, A.; Layton, W. J., Time filters increase accuracy of the fully implicit method. BIT Numer. Math., 2, 301-315 (2018) · Zbl 1444.65026
[47] Tang, Z. Y.; Jia, X. F.; Feng, H., Decoupling time filter method for the non-stationary Navier-Stokes/Darcy model. Math. Methods Appl. Sci. (2022)
[48] Layton, W. J., Introduction to the Numerical Analysis of Incompressible Viscous Flows (2008), Society for Industrial and Applied Mathematics · Zbl 1153.76002
[49] Girault, V.; Raviart, P. A., Finite Element Approximation of the Navier-Stokes Equations (1981), Springer: Springer Berlin · Zbl 0441.65081
[50] Li, Y.; Hou, Y. R.; Li, R., A stabilized finite volume method for the evolutionary Stokes-Darcy system. Comput. Math. Appl., 596-613 (2018) · Zbl 1409.76076
[51] Shan, L.; Hou, Y. R., A fully discrete stabilized finite element method for the time-dependent Navier-Stokes equations. Appl. Math. Comput., 85-99 (2009) · Zbl 1172.76027
[52] Qin, Y.; Wang, Y. S.; Li, J., A variable time step time filter algorithm for the geothermal system. SIAM J. Numer. Anal., 2781-2806 (2022) · Zbl 1505.76061
[53] Zou, G. A.; Wang, X.; Li, J., An extrapolated Crank-Nicolson virtual element scheme for the nematic liquid crystal flows. Adv. Comput. Math., 3 (2023) · Zbl 1518.35562
[54] Li, Y.; Hou, Y. R.; Rong, Y., A second-order artificial compression method for the evolutionary Stokes-Darcy system. Numer. Algorithms., 3, 1019-1048 (2020) · Zbl 1507.76114
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.