×
Zeng, Wei; Shi, Rui; Wang, Yalin; Yau, Shing-Tung; Gu, Xianfeng; Alzheimer’s Disease Neuroimaging Initiative

Teichmüller shape descriptor and its application to Alzheimer’s disease study. (English) Zbl 1304.92074

Summary: We propose a novel method to apply Teichmüller space theory to study the signature of a family of nonintersecting closed 3D curves on a general genus zero closed surface. Our algorithm provides an efficient method to encode both global surface and local contour shape information. The signature – Teichmüller shape descriptor – is computed by surface Ricci flow method, which is equivalent to solving an elliptic partial differential equation on surfaces and is numerically stable. We propose to apply the new signature to analyze abnormalities in brain cortical morphometry. Experimental results with 3D MRI data from Alzheimer’s disease neuroimaging initiative (ADNI) dataset [152 healthy control subjects versus 169 Alzheimer’s disease (AD) patients] demonstrate the effectiveness of our method and illustrate its potential as a novel surface-based cortical morphometry measurement in AD research.

MSC:

92C50 Medical applications (general)
92C55 Biomedical imaging and signal processing
30F60 Teichmüller theory for Riemann surfaces
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Angenent, S., Haker, S., Kikinis, R.,& Tannenbaum, A. (2000). Nondistorting flattening maps and the 3D visualization of colon CT images. IEEE Transactions on Medical Imaging, 19, 665–671.
[2] Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C.,&amp; Friston, K. (1998). Identifying global anatomical differences: Deformation-based morphometry. Human Brain Mapping, 6, 348–357. · doi:10.1002/(SICI)1097-0193(1998)6:5/6<348::AID-HBM4>3.0.CO;2-P
[3] Chincarini, A., Bosco, P., Calvini, P., Gemme, G., Esposito, M., Olivieri, C., et al. (2011). Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage, 58(2), 469–480.
[4] Chow, B., Lu, P.,&amp; Ni, L. (2006). Hamilton’s Ricci flow. Providence: American Mathematical Society. · Zbl 1118.53001
[5] Chung, M. K., Dalton, K. M.,&amp; Davidson, R. J. (2008). Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Transactions on Medical Imaging, 27, 1143–1151.
[6] Chung, M. K., Robbins, S. M., Dalton, K. M., Davidson, R. J., Alexander, A. L.,&amp; Evans, A. C. (May 2005). Cortical thickness analysis in autism with heat kernel smoothing. Neuroimage, 25, 1256–1265.
[7] Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehericy, S., Habert, M., et al. (2011). Automatic classification of patients with Alzheimer’s disease from structural MRI: A comparison of ten methods using the ADNI database. Neuroimage, 56(2), 766–781.
[8] Dale, A. M., Fischl, B.,&amp; Sereno, M. I. (1999). Cortical surface-based analysis I: Segmentation and surface reconstruction. Neuroimage, 27, 179–194.
[9] Davies, R. H., Twining, C. J., Allen, P. D., Cootes, T. F.,&amp; Taylor, C. J. (2003). Shape discrimination in the hippocampus using an MDL model. In International conference on information processing in medical imaging (IPMI). Ambleside.
[10] Desikan, R. S., Segonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., et al. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31, 968–980. · doi:10.1016/j.neuroimage.2006.01.021
[11] Farkas, H. M.,&amp; Kra, I. (1991). Riemann surfaces (Graduate texts in mathematics). New York: Springer.
[12] Fischl, B., Sereno, M. I.,&amp; Dale, A. M. (1999). Cortical surface-based analysis II: Inflation, flattening, and a surface-based coordinate system. NeuroImage, 9, 195–207.
[13] Fox, N., Scahill, R., Crum, W.,&amp; Rossor, M. (1999). Correlation between rates of brain atrophy and cognitive decline in AD. Neurology, 52(8), 1687–1689. · doi:10.1212/WNL.52.8.1687
[14] Frisoni, G., Fox, N., Jack, C., Scheltens, P.,&amp; Thompson, P. (2010). The clinical use of structural MRI in Alzheimer disease. Nature Reviews Neurology, 6(2), 67–77.
[15] Gardiner, F. P.,&amp; Lakic, N. (2000). Quasiconformal Teichmüller theory. Providence: American Mathematical Society. · Zbl 0949.30002
[16] Gerig, G., Styner, M., Jones, D., Weinberger, D.,&amp; Lieberman, J. (2001). Shape analysis of brain ventricles using SPHARM. In Proceedings of MMBIA 2001 (pp. 171–178).
[17] Gorczowski, K., Styner, M., Jeong, J.-Y., Marron, J. S., Piven, J., Hazlett, H. C., Pizer, S. M.,&amp; Gerig, G. (2007). Statistical shape analysis of multi-object complexes. IEEE computer society conference on computer vision and pattern recognition, CVPR ’07 (pp. 1–8). Minneapolis.
[18] Gu, X., Wang, Y., Chan, T. F., Thompson, P. M.,&amp; Yau, S.-T. (2004). Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Transactions on Medical Imaging, 23, 949–958.
[19] Guo, X., Wang, Z., Li, K., Li, Z., Qi, Z., Jin, Z., et al. (2010). Voxel-based assessment of gray and white matter volumes in Alzheimer’s disease. Neuroscience Letters, 468, 146–150. · doi:10.1016/j.neulet.2009.10.086
[20] Hamilton, R. S. (1988). The Ricci flow on surfaces. Mathematics and General Relativity, 71, 237–262. · Zbl 0663.53031 · doi:10.1090/conm/071/954419
[21] Henrici, P. (1988). Applied and computational complex analysis (Vol. 3). New York: Wiley-Intersecience. · Zbl 0635.30001
[22] Hua, X., Lee, S., Hibar, D. P., Yanovsky, I., Leow, A. D., Toga, A. W., et al. (2010). Mapping Alzheimer’s disease progression in 1309 MRI scans: Power estimates for different inter-scan intervals. Neuroimage, 51, 63–75.
[23] Hurdal, M. K.,&amp; Stephenson, K. (2004). Cortical cartography using the discrete conformal approach of circle packings. NeuroImage, 23, S119–S128.
[24] Jack, C. R. J., Bernstein, M. A., Fox, N. C., Thompson, P. M., Alexander, P. M., Harvey, D., et al. (2007). The Alzheimer’s disease neuroimaging initiative (ADNI): MRI methods. Journal of Magnetic Resonance Imaging, 27, 685–691.
[25] Jack, C. R, Jr, Shiung, M. M., Gunter, J. L., O’Brien, P. C., Weigand, S. D., Knopman, D. S., et al. (2004). Comparison of different MRI brain atrophy rate measures with clinical disease progression in AD. Neurology, 62, 591–600.
[26] Jin, M., Kim, J., Luo, F.,&amp; Gu, X. (September 2008). Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphics, 14, 1030–1043.
[27] Lai, R., Shi, Y., Scheibel, K., Fears, S., Woods, R., Toga, A.,&amp; Chan, T. (2010). Metric-induced optimal embedding for intrinsic 3D shape analysis. In 2010 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2871–2878). San Francisco.
[28] Liu, X., Shi, Y., Dinov, I.,&amp; Mio, W. (2010). A computational model of multidimensional shape. International Journal of Computer Vision, 89, 69–83. · Zbl 1477.68477 · doi:10.1007/s11263-010-0323-0
[29] Lui, L. M., Zeng, W., Yau, S.-T.&amp; Gu, X. (2010). Shape analysis of planar objects with arbitrary topologies using conformal geometry. In 11th European conference on computer vision (ECCV 2010). Heraklion.
[30] Mueller, S. G., Weiner, M. W., Thal, L. J., Petersen, R. C., Jack, C., Jagust, W., et al. (2005). The Alzheimer’s disease neuroimaging initiative. Neuroimaging Clinics of North America, 15, 869– 877. · doi:10.1016/j.nic.2005.09.008
[31] Pizer, S., Fritsch, D., Yushkevich, P., Johnson, V.,&amp; Chaney, E. (1999). Segmentation, registration, and measurement of shape variation via image object shape. IEEE Transactions on Medical Imaging, 18, 851–865.
[32] Qiu, A.,&amp; Miller, M. I. (2008). Multi-structure network shape analysis via normal surface momentum maps. NeuroImage, 42, 1430–1438.
[33] Schoen, R.,&amp; Yau, S.-T. (1994). Lectures on differential geometry. Boston: International Press of Boston. · Zbl 0830.53001
[34] Schwartz, E. L., Shaw, A.,&amp; Wolfson, E. (1989). A numerical solution to the generalized Mapmaker’s problem: Flattening nonconvex polyhedral surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1005–1008.
[35] Seppala, M.,&amp; T.S. (1992). Geometry of Riemann surfaces and Teichmüller spaces. North-Holland mathematics studies. Amsterdam: North-Holland.
[36] Sharon, E.,&amp; Mumford, D. (October 2006). 2D-shape analysis using conformal mapping. International Journal of Computer Vision, 70, 55–75.
[37] Shen, L., Saykin, A. J., Chung, M. K.,&amp; Huang, H. (2007). Morphometric analysis of hippocampal shape in mild cognitive impairment: An imaging genetics study. In IEEE 7th international conference bioinformatics and bioengineering. Boston.
[38] Shi, Y., Lai, R.,&amp; Toga, A. (2011). Corporate: cortical reconstruction by pruning outliers with Reeb analysis and topology-preserving evolution. Information Process Medical Imaging, 22, 233–244.
[39] Thompson, P. M. (1996). A surface-based technique for warping 3-dimensional images of the brain. IEEE Transactions on Medical Imaging, 15, 1–16. · doi:10.1109/42.511745
[40] Thompson, P. M., Hayashi, K. M., Zubicaray, G. D., Janke, A. L., Rose, S. E., Semple, J., et al. (2003). Dynamics of gray matter loss in Alzheimer’s disease. Journal of Neuroscience, 23, 994–1005 .
[41] Thurston, W. P. (1980). Geometry and topology of three-manifolds. Princeton: Princeton university. · Zbl 0435.58019
[42] Timsari, B.,&amp; Leahy, R. M. (2000). Optimization method for creating semi-isometric flat maps of the cerebral cortex. In SPIE symposium on medical imaging 2000: image processing (Vol. 3979, pp. 698–708). San Diego.
[43] Tosun, D., Reiss, A., Lee, A. D., Dutton, R. A., Hayashi, K. M., Bellugi, U., et al. (2006). Use of 3-D cortical morphometry for mapping increased cortical gyrification and complexity in Williams syndrome. In 3rd IEEE international symposium on biomedical imaging: From nano to macro 2006 (pp. 1172–1175). Arlington.
[44] Trouve, A.,&amp; Younes, L. (2005). Metamorphoses through Lie group action. Foundations of Computational Mathematics, 5, 173–198. · Zbl 1099.68116 · doi:10.1007/s10208-004-0128-z
[45] Wang, Y., Gu, X., Chan, T. F.,&amp; Thompson, P. M. (2009). Shape analysis with conformal invariants for multiply connected domains and its application to analyzing brain morphology. IEEE computer society conference on computer vision and pattern recognition, CVPR ’09 (pp. 202–209). Miami.
[46] Wang, Y., Gu, X., Chan, T. F., Thompson, P. M.,&amp; Yau, S.-T. (2006). Brain surface conformal parameterization with algebraic functions. Proceedings of medical image computing and computer-assisted intervention Part II (pp. 946–954). Copenhagen.
[47] Wang, Y., Gu, X., Chan, T. F., Thompson, P. M.,&amp; Yau, S.-T. (2008). Conformal slit mapping and its applications to brain surface parameterization. In Proceedings of international conference on medical image computing and computer-assisted intervention: Part I (pp. 585–593). New York.
[48] Wang, Y., Lui, L., Gu, X., Hayashi, K. M., Chan, T. F., Toga, A. W., et al. (2007). Brain surface conformal parameterization using Riemann surface structure. IEEE Transactions on Medical Imaging, 26, 853–865.
[49] Wang, Y., Shi, J. Yin, X., Gu, X., Chan, T. F., Yau, S.-T., Toga, A. W.&amp; Thompson, P. M. (2012). Brain surface conformal parameterization with the Ricci flow. IEEE Transcations on Medical Imaging, 31, 251–264.
[50] Wang, Y., Song, Y., Rajagopalan, P., An, K. L. T., Chou, Y., Gutman, B., et al. (2011). Surface-based TBM boosts power to detect disease effects on the brain: An N=804 ADNI study. Neuroimage, 56(4), 1993–2010.
[51] Winkler, A. M., Kochunov, P., Blangero, J., Almasy, L., Zilles, K., Fox, P. T., et al. (2010). Cortical thickness or grey matter volume? The importance of selecting the phenotype for imaging genetics studies. NeuroImage, 53(3), 1135–1146.
[52] Zeng, W., Lui, L. M., Gu, X.,&amp; Yau, S.-T. (2008). Shape analysis by conformal modules. International Journal of Methods and Applications of Analysis (MAA),15(4), 539–556. · Zbl 1184.30035
[53] Zeng, W., Samaras, D.,&amp; Gu, X. D. (2010). Ricci flow for 3D shape analysis. The IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(4), 662–677.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.