×

A stabilized second order exponential time differencing multistep method for thin film growth model without slope selection. (English) Zbl 1437.65149

Summary: In this paper, a stabilized second order in time accurate linear exponential time differencing (ETD) scheme for the no-slope-selection thin film growth model is presented. An artificial stabilizing term \(A \tau^2 \frac{\partial \Delta^2 u}{\partial t}\) is added to the physical model to achieve energy stability, with ETD-based multi-step approximations and Fourier collocation spectral method applied in the time integral and spatial discretization of the evolution equation, respectively. Long time energy stability and detailed \(\ell^\infty (0,T; \ell^2)\) error analysis are provided based on the energy method, with a careful estimate of the aliasing error. In addition, numerical experiments are presented to demonstrate the energy decay and convergence rate.

MSC:

65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
65Z05 Applications to the sciences
35B40 Asymptotic behavior of solutions to PDEs
76A20 Thin fluid films
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] R.A. Adams and J.J.F. Fournier, Sobolev spaces, 2nd ed. (Academic press, Singapore, 2003). · Zbl 1098.46001
[2] S. Agmon, Lectures on elliptic boundary value problems In: Vol. 369 of American Mathematical Soc. (2010). · Zbl 1221.35002
[3] B. Benesova, C. Melcher and E. Suli, An implicit midpoint spectral approximation of nonlocal Cahn-Hilliard equations. SIAM J. Numer. Anal. 52 (2014) 1466-1496. · Zbl 1328.65213
[4] G. Beylkin, J.M. Keiser and L. Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs. J. Comput. Phys. 147 (1998) 362-387. · Zbl 0924.65089
[5] C. Canuto and A. Quarteroni, Approximation results for orthogonal polynomials in sobolev spaces, Math. Comput. 38 (1982) 67-86. · Zbl 0567.41008
[6] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains. Springer (2006). · Zbl 1093.76002 · doi:10.1007/978-3-540-30726-6
[7] C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics. Springer Science & Business Media (2007). · Zbl 1121.76001 · doi:10.1007/978-3-540-30728-0
[8] W. Chen and Y. Wang, A mixed finite element method for thin film epitaxy. Numer. Math. 122 (2012) 771-793. · Zbl 1254.82028
[9] W. Chen, S. Conde, C. Wang, X. Wang and S.M. Wise, A linear energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 52 (2012) 546-562. · Zbl 1326.76007
[10] W. Chen, C. Wang, X. Wang and S.M. Wise, A linear iteration algorithm for a second-order energy stable scheme for a thin film model without slope selection. J. Sci. Comput. 59 (2014) 574-601. · Zbl 1305.82034
[11] K. Cheng, W. Feng, C. Wang and S.M. Wise, An energy stable fourth order finite difference scheme for the Cahn-Hilliard equation. J. Comput. Appl. Math. 362 (2019) 574-595. · Zbl 1416.65256
[12] K. Cheng, Z. Qiao and C. Wang, A third order exponential time differencing numerical scheme for no-slope-selection epitaxial thin film model with energy stability. J. Sci. Comput. 81 (2019) 154-185. · Zbl 1427.65148
[13] S.M. Cox and P.C. Matthews, Exponential time differencing for stiff systems. J. Comput. Phys. 176 (2002) 430-455. · Zbl 1005.65069
[14] G. Ehrlich and F.G. Hudda, Atomic view of surface self-diffusion: Tungsten on tungsten. J. Chem. Phys. 44 (1966) 1039-1049.
[15] D.J. Eyre, Unconditionally gradient stable time marching the Cahn-Hilliard equation. In, Vol. 529 of Symposia BB - Computational & Mathematical Models of Microstructural Evolution (1998) 39.
[16] W. Feng, C. Wang, S.M. Wise and Z. Zhang, A second-order energy stable backward differentiation formula method for the epitaxial thin film equation with slope selection. Numer. Methods Partial Differ. Equ. 34 (2018) 1975-2007. · Zbl 1407.76095
[17] L. Golubović, Interfacial coarsening in epitaxial growth models without slope selection. Phys. Rev. Lett. 78 (1997) 90-93.
[18] D. Gottlieb and S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications. SIAM, Philadelphia 26 (1977). · Zbl 0412.65058 · doi:10.1137/1.9781611970425
[19] S. Gottlieb and C. Wang, Stability and convergence analysis of fully discrete fourier collocation spectral method for 3-D viscous burgers’ equation. J. Sci. Comput. 53 (2012) 102-128. · Zbl 1297.76126
[20] M. Hochbruck and A. Ostermann, Exponential integrators. Acta Numer. 19 (2010) 209-286. · Zbl 1242.65109 · doi:10.1017/S0962492910000048
[21] M. Hochbruck and A. Ostermann, Exponential multistep methods of Adams-type. BIT Numer. Math. 51 (2011) 889-908. · Zbl 1237.65071
[22] L. Ju, X. Liu and W. Leng, Compact implicit integration factor methods for a family of semilinear fourth-order parabolic equations. Discrete Cont. Dyn-B. 19 (2014) 1667-1687. · Zbl 1304.65190
[23] L. Ju, J. Zhang and Q. Du, Fast and accurate algorithms for simulating coarsening dynamics of Cahn-Hilliard equations. Comput. Mater. Sci. 108 (2015) 272-282.
[24] L. Ju, J. Zhang, L. Zhu and Q. Du, Fast explicit integration factor methods for semilinear parabolic equations. J. Sci. Comput. 62 (2015) 431-455. · Zbl 1317.65172
[25] L. Ju, X. Li, Z. Qiao and H. Zhang, Energy stability and convergence of exponential time differencing schemes for the epitaxial growth model without slope selection. Math. Comput. 87 (2018) 1859-1885. · Zbl 1448.65182
[26] R.V. Kohn and X. Yan, Upper bound on the coarsening rate for an epitaxial growth model. Commun. Pur. Appl. Math. 56 (2003) 1549-1564. · Zbl 1033.35123 · doi:10.1002/cpa.10103
[27] B. Li, High-order surface relaxation versus the Ehrlich-Schwoebel effect. Nonlinearity 19 (2006) 2581-2603. · Zbl 1112.35084
[28] B. Li and J. Liu, Thin film epitaxy with or without slope selection. Eur. J. Appl. Math. 14 (2003) 713-743. · Zbl 1059.35059
[29] B. Li and J. Liu, Epitaxial growth without slope selection: energetics, coarsening, and dynamic scaling. J. Nonlinear Sci. 14 (2004) 429-451. · Zbl 1123.35327
[30] D. Li and Z. Qiao, On the stabilization size of semi-implicit Fourier-spectral methods for 3D Cahn-Hilliard equations. Commun. Math. Sci. 15 (2017) 1489-1506. · Zbl 1387.35495
[31] D. Li, Z. Qiao and T. Tang, Characterizing the stabilization size for semi-implicit Fourier-spectral method to phase field equations. SIAM J. Numer. Anal. 54 (2016) 1653-1681. · Zbl 1346.35162
[32] X. Li, Z. Qiao and H. Zhang, Convergence of a fast explicit operator splitting method for the epitaxial growth model with slope selection. SIAM J. Numer. Anal. 55 (2017) 265-285. · Zbl 1368.35268
[33] W. Li, W. Chen, C. Wang, Y. Yan and R. He, A second order energy stable linear scheme for a thin film model without slope selection. J. Sci. Comput. 76 (2018) 1905-1937. · Zbl 1422.65399
[34] D. Moldovan and L. Golubovic, Interfacial coarsening dynamics in epitaxial growth with slope selection. Phys. Rev. E 61 (2000) 6190-6214.
[35] L. Nirenberg, On elliptic partial differential equations. IL Principio Di Minimo E Sue Applicazioni Alle Equazioni Funzionali 13 (1959) 1-48. · Zbl 0088.07601
[36] Z. Qiao, Z. Sun and Z. Zhang, Stability and convergence of second-order schemes for the nonlinear epitaxial growth model without slope selection. Math. Comput. 84 (2015) 653-674. · Zbl 1305.65186
[37] Z. Qiao, T. Tang and H. Xie, Error analysis of a mixed finite element method for the molecular beam epitaxy model. SIAM J. Numer. Anal. 53 (2015) 184-205. · Zbl 1327.35152
[38] Z. Qiao, C. Wang, S.M. Wise and Z. Zhang, Error analysis of a finite difference scheme for the epitaxial thin film model with slope selection with an improved convergence constant. Int. J. Numer. Anal. Mod. 14 (2017) 283-305. · Zbl 1371.35143
[39] R.L. Schwoebel, Step motion on crystal surfaces II. J. Appl. Phys. 40 (1969) 614-618.
[40] J. Shen, T. Tang and L. Wang, Spectral Methods: Algorithms, Analysis and Applications. Springer Science & Business Media 41 (2011). · Zbl 1227.65117
[41] J. Shen, C. Wang, X. Wang and S.M. Wise, Second-order convex splitting schemes for gradient flows with Ehrlich-Schwoebel type energy: application to thin film epitaxy. SIAM J. Numer. Anal. 50 (2012) 105-125. · Zbl 1247.65088
[42] J. Shen, J. Xu and J. Yang, The scalar auxiliary variable (sav) approach for gradient flows. J. Comput. Phys. 353 (2018) 407-416. · Zbl 1380.65181
[43] C. Wang, X. Wang and S.M. Wise, Unconditionally stable schemes for equations of thin film epitaxy. Discrete Contin. Dyn. Syst. 28 (2010) 405-423. · Zbl 1201.65166 · doi:10.3934/dcds.2010.28.405
[44] X. Wang, L. Ju and Q. Du, Efficient and stable exponential time differencing Runge-Kutta methods for phase field elastic bending energy models. J. Comput. Phys. 316 (2016) 21-38. · Zbl 1349.92015
[45] C. Xu and T. Tang, Stability analysis of large time-stepping methods for epitaxial growth models. SIAM J. Numer. Anal. 44 (2006) 1759-1779. · Zbl 1127.65069
[46] X. Yang, J. Zhao and Q. Wang, Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method. J. Comput. Phys. 333 (2017) 104-127. · Zbl 1375.82121
[47] L. Zhu, L. Ju and W. Zhao, Fast high-order compact exponential time differencing Runge-Kutta methods for second-order semilinear parabolic equations. J. Sci. Comput. 67 (2016) 1043-1065. · Zbl 1342.65187
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.