×

The multiple gamma-functions and the log-gamma integrals. (English) Zbl 1262.33004

Summary: In this paper, which is a companion paper to [the first author, “The Barnes \(G\)-function and the Catalan constant,” Kyushu J. Math. (in press)], starting from the Euler integral which appears in a generalization of Jensen’s formula, we give a closed form for the integral of \(\log \Gamma(1 \pm t)\). This enables us to locate the genesis of two new functions \(A_{1/a}\) and \(C_{1/a}\) considered by Srivastava and Choi. We consider the closely related function \(A(a)\) and the Hurwitz zeta function, which render the task easier than working with the functions themselves. We also give a direct proof of Theorem 4.1, which is a consequence of [K. Chakraborty, S. Kanemitsu and T. Kuzumaki, “On the Barnes multiple zeta- and gamma function,” (in press), Corollary 1.1], though.

MSC:

33B15 Gamma, beta and polygamma functions
11M35 Hurwitz and Lerch zeta functions
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] L. V. Ahlfors, Complex Analysis, McGraw-Hill Book, New York, NY, USA, 3rd edition, 1978. · Zbl 0435.35085
[2] X.-H. Wang, “The Barnes G-function and the Catalan constant,” Kyushu Journal of Mathematics. In press. · Zbl 1319.11063
[3] E. T. Whittaker and G. N. Watson, Modern Analysis, Cambridge University Press, London, UK, 4th edition, 1927. · JFM 53.0180.04
[4] E. W. Barnes, “On the theory of the theory of the multiple gamma function,” Transactions of the Cambridge Philosophical Society, vol. 31, pp. 374-439, 1904. · JFM 35.0462.01
[5] K. Chakraborty, S. Kanemitsu, and T. Kuzumaki, “On the Barnes multiple zeta- and gamma function,” In press. · Zbl 1356.11059
[6] E. W. Barnes, “The theory of the G-function,” Quarterly Journal of Mathematics, vol. 31, pp. 264-314, 1899. · JFM 30.0389.02
[7] H. M. Srivastava and J. Choi, Series Associated with the Zeta and Related Functions, Kluwer Academic, Dordrecht, The Netherlands, 2001. · Zbl 1014.33001
[8] H. M. Srivastava and J.-S. Choi, Zeta and Q Functions and Associated Series and Integrals, Elsevier Science, London, UK, 2012. · Zbl 1239.33002
[9] S. Kanemitsu and H. Tsukada, Vistas of Special Functions, World Scientific, River Edge, NJ, USA, 2007. · Zbl 1161.33001 · doi:10.1142/9789812708830
[10] V. H. Kinkelin, “Über eine mit der Gamma Funktion verwandte Transcendente und deren Anwend ung auf die Integralrechnung,” Journal für die reine und angewandte Mathematik, vol. 19, pp. 122-158, 1860. · ERAM 057.1509cj
[11] S. Kanemitsu, H. Kumagai, and M. Yoshimoto, “Sums involving the Hurwitz zeta function,” The Ramanujan Journal, vol. 5, no. 1, pp. 5-19, 2001. · Zbl 0989.11043 · doi:10.1023/A:1011496709753
[12] H.-L. Li and M. Toda, “Elaboration of some results of Srivastava and Choi,” Zeitschrift für Analysis und ihre Anwendungen, vol. 25, no. 4, pp. 517-533, 2006. · Zbl 1170.11322 · doi:10.4171/ZAA/1305
[13] O. Espinosa and V. H. Moll, “On some integrals involving the Hurwitz zeta function. II,” The Ramanujan Journal, vol. 6, no. 4, pp. 449-468, 2002. · Zbl 1156.11333 · doi:10.1023/A:1021171500736
[14] J.-S. Choi and H. M. Srivastava, “Certain classes of series involving the zeta function,” Journal of Mathematical Analysis and Applications, vol. 231, no. 1, pp. 91-117, 1999. · Zbl 0932.11054 · doi:10.1006/jmaa.1998.6216
[15] O. Espinosa and V. H. Moll, “On some integrals involving the Hurwitz zeta function. I,” The Ramanujan Journal, vol. 6, no. 2, pp. 159-188, 2002. · Zbl 1019.33001 · doi:10.1023/A:1015706300169
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.