×

Spectral methods based on new formulations for coupled Stokes and Darcy equations. (English) Zbl 1349.76574

Summary: In this paper we consider the numerical solution of the Stokes and Darcy coupled equations, which frequently appears in porous media modeling. The main contribution of this work is as follows: First, we introduce a new formulation for the Stokes/Darcy coupled equations, subject respectively to the Beavers-Joseph-Saffman interface condition and an alternative matching interface condition. Secondly, we prove the well-posedness of these weak problems by using the classical saddle point theory. Thirdly, some spectral approximations to the weak problems are proposed and analyzed, and some error estimates are provided. It is found that the new formulations significantly simplify the error analysis and numerical implementation. Finally, some two-dimensional spectral and spectral element numerical examples are provided to demonstrate the efficiency of our methods.

MSC:

76M22 Spectral methods applied to problems in fluid mechanics
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
76S05 Flows in porous media; filtration; seepage
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Badea, L.; Discacciati, M.; Quarteroni, A., Numerical analysis of the Navier-Stokes/Darcy coupling, Numer. Math., 115, 2, 195-227 (2010) · Zbl 1423.35304
[2] Bernardi, C.; Hecht, F.; Nouri, F. Z., A new finite-element discretization of the Stokes problem coupled with the Darcy equations, IMA J. Numer. Anal., 30, 1, 61-93 (2010) · Zbl 1423.76213
[3] Bernardi, C.; Maday, Y., Approximations Spectrales de Problèmes aux Limites Elliptiques (1992), Springer-Verlag: Springer-Verlag Paris · Zbl 0773.47032
[4] Burman, E.; Hansbo, P., A unified stabilized method for Stokesʼ and Darcyʼs equations, J. Comput. Appl. Math., 198, 1, 35-51 (2007) · Zbl 1101.76032
[5] Canuto, C.; Hussaini, M. Y.; Quarteroni, A.; Zang, T. A., Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (2007), Springer-Verlag: Springer-Verlag Berlin, Heidelberg, New York · Zbl 1121.76001
[6] Cao, Y.; Gunzburger, M.; Hu, X.; Hua, F.; Wang, X.; Zhao, W., Finite element approximations for Stokes-Darcy flow with Beavers-Joseph interface conditions, SIAM J. Numer. Anal., 47, 6, 4239-4256 (2010) · Zbl 1252.76040
[7] Das, D. B.; Nassehi, V.; Wakeman, R. J., A finite volume model for the hydrodynamics of combined free and porous flow in sub-surface regions, Adv. Environ. Res., 7, 1, 35-58 (2002)
[8] Discacciati, M.; Miglio, E.; Quarteroni, A., Mathematical and numerical models for coupling surface and groundwater flows, Appl. Numer. Math., 43, 1-2, 57-74 (2002) · Zbl 1023.76048
[9] Discacciati, M.; Quarteroni, A., Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations, Comput. Vis. Sci., 6, 2, 93-103 (2004) · Zbl 1299.76252
[10] Discacciati, M.; Quarteroni, A., Navier-Stokes/Darcy coupling: modeling, analysis, and numerical approximation, Rev. Mat. Complut., 22, 2, 315-426 (2009) · Zbl 1172.76050
[11] Discacciati, M.; Quarteroni, A.; Valli, A., Robin-Robin domain decomposition methods for the Stokes-Darcy coupling, SIAM J. Numer. Anal., 45, 3, 1246-1268 (2007) · Zbl 1139.76030
[12] El Chami, F.; Mansour, G.; Sayah, T., Error studies of the coupling Darcy-Stokes system with velocity-pressure formulation, Calcolo, 49, 2, 73-93 (2012) · Zbl 1248.76039
[13] Ervin, V. J.; Jenkins, E. W.; Sun, S., Coupled generalized non-linear Stokes flow with flow through a porous media, SIAM J. Numer. Anal., 47, 2, 929-952 (2009) · Zbl 1279.76032
[14] Galvis, J.; Sarkis, M., Balancing domain decomposition methods for mortar coupling Stokes-Darcy systems, (Domain Decomposition Methods in Science and Engineering XVI. Domain Decomposition Methods in Science and Engineering XVI, Lect. Notes Comput. Sci. Eng., vol. 55 (2007)), 373-380
[15] Galvis, J.; Sarkis, M., Non-matching mortar discretization analysis for the coupling Stokes-Darcy equations, Electron. Trans. Numer. Anal., 26, 350-384 (2007) · Zbl 1170.76024
[16] Girault, V.; Rivière, B., DG approximation of coupled Navier-Stokes and Darcy equations by Beaver-Joseph-Saffman interface condition, SIAM J. Numer. Anal., 47, 3, 2052-2089 (2009) · Zbl 1406.76082
[17] Glowinski, R.; Pironneau, O., On a mixed finite element approximation of the Stokes problem (I), Numer. Math., 33, 4, 397-424 (1979) · Zbl 0423.65059
[18] Hanspal, N. S.; Waghode, A. N.; Nassehi, V.; Wakeman, R. J., Numerical analysis of coupled Stokes/Darcy flows in industrial filtrations, Transp. Porous Media, 64, 1, 73-101 (2006)
[19] Hellou, M.; Martinez, J.; El Yazidi, M., Stokes flow through microstructural model of fibrous media, Mech. Res. Commun., 31, 1, 97-103 (2004) · Zbl 1045.76574
[20] Huang, Z. J.; Tarbell, J. M., Numerical simulation of mass transfer in porous media of blood vessel walls, Am. J. Physiol., Heart Circ. Physiol., 273, 1, H464-H477 (1997)
[21] Iliev, O.; Laptev, V., On numerical simulation of flow through oil filters, Comput. Vis. Sci., 6, 2, 139-146 (2004) · Zbl 1299.76255
[22] Jäger, W.; Mikelić, A., On the interface boundary condition of Beavers, Joseph, and Saffman, SIAM J. Appl. Math., 60, 4, 1111-1127 (2000) · Zbl 0969.76088
[23] Khaled, A. R.A.; Vafai, K., The role of porous media in modeling flow and heat transfer in biological tissues, Int. J. Heat Mass Transf., 46, 26, 4989-5003 (2003) · Zbl 1121.76521
[24] Kim, J.; Moin, P., Application of a fractional-step method to incompressible Navier-Stokes equations, Numer. Math., 59, 2, 308-323 (1985) · Zbl 0582.76038
[25] Koelman, J.; Nepveu, M., Darcy flow in porous media: Cellular automata simulations, (Numerical Methods for the Simulation of Multi-phase and Complex Flow. Numerical Methods for the Simulation of Multi-phase and Complex Flow, Lect. Notes Phys., vol. 398 (1992)), 136-145
[26] Layton, W. J.; Schieweck, F.; Yotov, I., Coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 40, 6, 2195-2218 (2003) · Zbl 1037.76014
[27] Le Bars, M.; Worster, M. G., Interfacial conditions between a pure fluid and a porous medium: implications for binary alloy solidification, J. Fluid Mech., 550, 1, 149-173 (2006) · Zbl 1097.76066
[28] Mardal, K. A.; Tai, X. C.; Winther, R., A robust finite element method for Darcy-Stokes flow, SIAM J. Numer. Anal., 40, 5, 1605-1631 (2003) · Zbl 1037.65120
[29] Mu, M.; Xu, J., A two-grid method of a mixed Stokes-Darcy model for coupling fluid flow with porous media flow, SIAM J. Numer. Anal., 45, 5, 1801-1813 (2007) · Zbl 1146.76031
[30] Quarteroni, A.; Valli, A., Numerical Approximation of Partial Differential Equations (1997), Springer-Verlag: Springer-Verlag New York
[31] Roberts, J.; Thomas, J. M., Mixed and hybrid finite element methods (1987), INRIA Rapports de Recherche: INRIA Rapports de Recherche Paris
[32] Saffman, P. G., On the boundary condition at the surface of a porous medium, Stud. Appl. Math., 50, 2, 93-101 (1971) · Zbl 0271.76080
[33] Urquiza, J. M.; NʼDri, D.; Garon, A.; Delfour, M. C., Coupling Stokes and Darcy equations, Appl. Numer. Math., 58, 5, 525-538 (2008) · Zbl 1134.76033
[34] Wathen, A.; Silvester, D., Fast iterative solution of stabilised Stokes systems. Part I: Using simple diagonal preconditioners, SIAM J. Numer. Anal., 30, 3, 630-649 (1993) · Zbl 0776.76024
[35] Xie, X.; Xu, J.; Xue, G., Uniformly-stable finite element methods for Darcy-Stokes-Brinkman models, J. Comput. Math., 26, 3, 437-455 (2008) · Zbl 1174.76013
[36] Xu, C., An efficient method for the Navier-Stokes/Euler coupled equations via a collocation approximation, SIAM J. Numer. Anal., 38, 4, 1217-1242 (2001) · Zbl 0985.76068
[37] Xu, C.; Maday, Y., A global algorithm in the numerical resolution of the viscous/inviscid coupled problem, Chin. Ann. Math., Ser. B, 18, 191-200 (1997) · Zbl 0880.76059
[38] Yamaguchi, Y.; Chang, C. J.; Brown, R. A., Multiple buoyancy-driven flows in a vertical cylinder heated from below, Philos. Trans. R. Soc. Lond. A, 312, 1523, 519-552 (1984) · Zbl 0573.76079
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.