Li, Bingjie; Wang, Suming; Ji, Lipeng Finite-dimensional approximation of solutions for a nonlinear system of coupled hyperbolic equations. (Chinese. English summary) Zbl 0968.35012 J. Baoji Coll. Arts Sci., Nat. Sci. 20, No. 4, 255-257 (2000). The paper concerns the system of two nonlinear wave equations \[ \left.\begin{aligned} u_{tt} &-D_1\Delta u-p_1 u+p_2 uv= f(x,t)\\ v_{tt} &-D_2\Delta v- p_2 uv+ p_3v= g(x,t)\end{aligned}\right\} x\in\Omega,\;t>0 \] with homogeneous Dirichlet boundary conditions and initial conditions \(u|_{t=0}= \varphi_1\), \(v|_{t=0}= \psi_1\), \(u_t|_{t=0}= \psi_2\), \(v_t|_{t=0}= \psi_2\). The approximating solutions are constructed by means of the eigenfunctions of the eigenvalue problem \(-\Delta w= \lambda w\) in \(\Omega\), \(u= 0\) on \(\partial\Omega\). MSC: 35A35 Theoretical approximation in context of PDEs 35L70 Second-order nonlinear hyperbolic equations 35L55 Higher-order hyperbolic systems Keywords:Galerkin approximation; initial-boundary value problem; system of two nonlinear wave equations PDF BibTeX XML Cite \textit{B. Li} et al., J. Baoji Coll. Arts Sci., Nat. Sci. 20, No. 4, 255--257 (2000; Zbl 0968.35012)