×

Quantum mechanism of condensation and high \(T_c\) superconductivity. (English) Zbl 1428.81009

Summary: The main objective of this paper is to introduce a new quantum mechanism of condensates and superconductivity based on a new interpretation of quantum mechanical wavefunctions, and on recent developments in quantum physics and statistical physics. First, we postulate that the wavefunction \(\psi = | \psi |e^{i \varphi}\) is the common wavefunction for all particles in the same class determined by the external potential \(V(x)\), \(| \psi(x)|^2\) represents the distribution density of the particles, and \(\frac{\hbar}{m} \nabla \varphi\) is the velocity field of the particles. Although the new interpretation does not alter the basic theories of quantum mechanics, it is an entirely different interpretation from the classical Bohr interpretation, removes all absurdities and offers new insights for quantum physics and for condensed matter physics. Second, we show that the key for condensation of bosonic particles is that their interaction is sufficiently weak to ensure that a large collection of boson particles are in a state governed by the same condensation wavefunction field \(\psi\) under the same bounding potential \(V\). For superconductivity, the formation of superconductivity comes down to conditions for the formation of electron pairs, and for the electron pairs to share a common wavefunction. Thanks to the recently developed principle of interaction dynamics (PID) interaction potential of electrons and the average-energy level formula of temperature, these conditions for superconductivity are explicitly derived. Furthermore, we obtain both microscopic and macroscopic formulas for the critical temperature. The field and topological phase transition equations for condensates are also derived.

MSC:

81P05 General and philosophical questions in quantum theory
82B10 Quantum equilibrium statistical mechanics (general)
82D55 Statistical mechanics of superconductors
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abdel-Jawad, M., Nat. Phys.2, 821 (2006).
[2] Abrikosov, A. A. and Gor/’kov, L. P., Sov. Phys. JETP12, 1243 (1961).
[3] Alloul, H., Ohno, T. and Mendels, P., Phys. Rev. Lett.63, 1700 (1989).
[4] Anderson, P. W., Science235, 1196 (1987).
[5] Anderson, P. W., Science316, 1705 (2007).
[6] Ando, Y.et al., Phys. Rev. Lett.88, 137005 (2002).
[7] Arai, M., Phys. Rev. Lett.83, 608 (1999).
[8] Bardeen, J., Cooper, L. N. and Schrieffer, J. R., Phys. Rev.108, 1175 (1957). · Zbl 0090.45401
[9] Beal-Monod, M. T., Bourbonnais, C. and Emery, V. J., Phys. Rev. B34, 7716 (1986).
[10] Bednorz, J. G. and Muller, K. A., Z. Phys. B64, 189 (1986).
[11] Beekman, A. J., Phys. Rep.683, 1 (2017).
[12] Bell, J., Physics1, 195 (1964).
[13] Blanco-Canosa, S., Phys. Rev. B90, 054513 (2014).
[14] Bohr, N., Phys. Rev.48, 696 (1935). · Zbl 0012.42701
[15] Božović, I., IEEE Trans. Appl. Supercond.11, 2686 (2001).
[16] Božović, I.et al., Nature536, 309 (2016).
[17] Bucher, B.et al., Phys. Rev. Lett.70, 2012 (1993).
[18] Carbotte, J. P., Timusk, T. and Hwang, J., Rep. Prog. Phys.74, 066501 (2011).
[19] Castellani, C., Di Castro, C. and Grilli, M., Phys. Rev. Lett.75, 4650 (1995).
[20] Chakravarty, S., Halperin, B. I. and Nelson, D. R., Phys. Rev. Lett.60, 1057 (1988).
[21] Chakravarty, S.et al., Phys. Rev. B63, 094503 (2001).
[22] Chang, J., Nat. Phys.8, 871 (2012).
[23] Chatterjee, U., Proc. Natl. Acad. Sci. USA108, 9346 (2011).
[24] Chien, T. R., Wang, Z. Z. and Ong, N. P., Phys. Rev. Lett.67, 2088 (1991).
[25] Cohen, M., Anderson, P. W. and Douglas, D. H., Superconductivity in d- and f-Band Metals (American Institute of Physics, New York, 1972).
[26] Comin, R., Science343, 390 (2014).
[27] Corboz, P., Rice, T. M. and Troyer, M., Phys. Rev. Lett.113, 046402 (2014).
[28] Corson, J.et al., Nature398, 221 (1999).
[29] Cyr-Choinière, O., Phys. Rev. B92, 224502 (2015).
[30] da Silva Neto, E. H., Phys. Rev. B87, 161117 (2013).
[31] da Silva Neto, E. H.et al., Science343, 393 (2014).
[32] Dahm, T., Nat. Phys.5, 217 (2009).
[33] Dai, P.et al., Phys. Rev. B63, 054525 (2001).
[34] Daou, R., Nature463, 519 (2010).
[35] Dean, M. P. M., Nat. Mater.12, 1019 (2013).
[36] Doiron-Leyraud, N., Nature447, 565 (2007).
[37] Doiron-Leyraud, N.et al., Phys. Rev. B91, 245136 (2015).
[38] Dubroka, A., Phys. Rev. Lett.106, 047006 (2011).
[39] Einstein, A., Podolsky, B. and Rosen, N., Phys. Rev.47, 777 (1935). · Zbl 0012.04201
[40] Emery, V. J. and Kivelson, S. A., Physica C209, 597 (1993).
[41] Emery, V. J. and Kivelson, S. A., Nature374, 434 (1995).
[42] Fauque, B., Phys. Rev. Lett.96, 197001 (2006).
[43] Fedorov, A. V., Phys. Rev. Lett.82, 2179 (1999).
[44] Feng, D. L., Science289, 277 (2000).
[45] Fernandes, R. M., Chubukov, A. V. and Schmalian, J., Nat. Phys.10, 97 (2014).
[46] Fong, H. F., Phys. Rev. B61, 14773 (2000).
[47] Fradkin, E., Kivelson, S. A. and Tranquada, J. M., Rev. Mod. Phys.87, 459 (2015).
[48] Frieman, J. A., Turner, M. S. and Huterer, D., Annu. Rev. Astron. Astrophys.46, 385 (2008).
[49] Fujita, K., Science344, 612 (2014).
[50] Garg, A., Randeria, M. and Trivedi, N., Nat. Phys.4, 762 (2008).
[51] Georges, A.et al., Rev. Mod. Phys.68, 13 (1996).
[52] Ghiringhelli, G., Science337, 821 (2012).
[53] Gozar, A., Nature455, 782 (2008).
[54] Griffiths, D., Introduction to Elementary Particles (Wiley-Vch, Weinheim, 2008). · Zbl 1162.00012
[55] Hashimoto, M., Nat. Phys.10, 483 (2014).
[56] He, X.et al., Rev. Sci. Instrum.87, 113903 (2016).
[57] Hinkov, V., Nat. Phys.3, 780 (2007).
[58] Hinkov, V.et al., Science319, 597 (2008).
[59] Hoffman, J. E., Science297, 1148 (2002).
[60] Homes, C. C.et al., Phys. Rev. Lett.71, 1645 (1993).
[61] Howald, C.et al., Proc. Natl Acad. Sci. USA100, 9705 (2003).
[62] Hussey, N. E., Takenaka, K. and Takagi, H., Phil. Mag.84, 2847 (2004).
[63] Ito, T., Takenaka, K. and Uchida, S., Phys. Rev. Lett.70, 3995 (1993).
[64] Kaiser, S., Phys. Rev. B89, 184516 (2014).
[65] Kaminski, A., Phys. Rev. Lett.90, 207003 (2003).
[66] Keimer, B.et al., Nature518, 179 (2015).
[67] Kivelson, S. A., Rev. Mod. Phys.75, 1201 (2003).
[68] Kivelson, S. A., Fradkin, E. and Emery, V. J., Nature393, 550 (1998).
[69] Kohsaka, Y., Nature454, 1072 (2008).
[70] Kokalj, J., Hussey, N. E. and McKenzie, R. H., Phys. Rev. B86, 045132 (2012).
[71] Lawler, M. J., Nature466, 347 (2010).
[72] Le Tacon, M., Nat. Phys.7, 725 (2011).
[73] Le Tacon, M.et al., Phys. Rev. B88, 020501 (2013).
[74] Le Tacon, M.et al., Nat. Phys.10, 52 (2014).
[75] Lee, J., Science325, 1099 (2009).
[76] Lee, P. A., Nagaosa, N. and Wen, X. G., Rev. Mod. Phys.78, 17 (2006).
[77] Leggett, A. J., Proc. Natl Acad. Sci. USA96, 8365 (1999).
[78] Li, L., Phys. Rev. B81, 054510 (2010).
[79] Li, Q.et al., Phys. Rev. Lett.99, 067001 (2007).
[80] Lifshitz, E. and Pitaevskii, L., Statistical Physics Part 2, Landau and Lifshitz Course of Theoretical Physics, Vol. 9 (Oxford, 1980).
[81] Liu, L.et al., Phys. Rev. Lett.108, 126406 (2012).
[82] R. Liu et al., Discrete Continuous Dynamical Syst. B. https://doi.org/10.3934/dcdsb.2018214 (2017).
[83] Loeser, A. G., Science273, 325 (1996).
[84] Lubashevsky, Y.et al., Phys. Rev. Lett.112, 147001 (2014).
[85] Ma, T. and Wang, S., J. Math. Phys.46, 095112 (2005). · Zbl 1111.58017
[86] Ma, T. and Wang, S., Phase Transition Dynamics (Springer-Verlag, 2013). · Zbl 1451.82003
[87] Ma, T. and Wang, S., Mathematical Principles of Theoretical Physics (Science Press, 2015).
[88] Ma, T. and Wang, S., J. Math. Study50, 215 (2017). · Zbl 1399.82002
[89] T. Ma and S. Wang, Statistical Theory of Heat (2017).
[90] T. Ma and S. Wang, Topological Phase Transitions I: Quantum Phase Transitions (2017).
[91] Marshall, D. S., Phys. Rev. Lett.76, 4841 (1996).
[92] Martin, S.et al., Phys. Rev. B41, 846 (1990).
[93] Matsui, H., Phys. Rev. Lett.90, 217002 (2003).
[94] McElroy, K., Nature422, 592 (2003).
[95] Mesaros, A., Science333, 426 (2011).
[96] Miyake, K., Schmitt-Rink, S. and Varma, C. M., Phys. Rev. B34, 6554 (1986).
[97] Nagamatsu, J.et al., Nature410, 63 (2001).
[98] Norman, M. R., Nature392, 157 (1998).
[99] Paramekanti, A., Randeria, M. and Trivedi, N., Phys. Rev. B70, 054504 (2004).
[100] Parker, C. V., Nature468, 677 (2010).
[101] Phillabaum, B. V., Carlson, E. W. and Dahmen, K. A., Nat. Commun.3, 915 (2012).
[102] Plate, M., Phys. Rev. Lett.95, 077001 (2005).
[103] Puchkov, A. V., Basov, D. N. and Timusk, T., J. Phys.: Condens. Matter8, 10049 (1996).
[104] Raghu, S., Kivelson, S. A. and Scalapino, D. J., Phys. Rev. B81, 224505 (2010).
[105] Ramshaw, B. J., A Quantum Critical Point at the Heart of High Temperature Superconductivity348, 317 (2015).
[106] Reber, T. J., Nat. Phys.8, 606 (2012).
[107] S. Sachdev, Quantum Phase Transitions (1999). · Zbl 1233.82003
[108] Scalapino, D. J., Rev. Mod. Phys.84, 1383 (2012).
[109] Scalapino, D. J. and White, S. R., Physica C481, 146 (2012).
[110] Sebastian, S. E., Nature511, 61 (2014).
[111] Stoudenmire, E. M. and White, S. R., Annu. Rev. Condens. Matter Phys.3, 6.1 (2012).
[112] Tabis, W., Nat. Commun.5, 5875 (2014).
[113] Tajima, S.et al., Phys. Rev. Lett.86, 500 (2001).
[114] Tallon, J. L.et al., Physica C235-240, 1821 (1994).
[115] Torchinsky, D. H.et al., Nat. Mater.12, 387 (2013).
[116] Tranquada, J. M.et al., Nature375, 561 (1995).
[117] Tsuei, C. C. and Kirtley, J. R., Rev. Mod. Phys.72, 969 (2000).
[118] Uemura, Y. J., Phys. Rev. Lett.62, 2317 (1989).
[119] Ulbrich, H. and Braden, M., Physica C481, 31 (2012).
[120] Vaknin, D., Phys. Rev. Lett.58, 2802 (1987).
[121] Valla, T., Phys. Rev. Lett.85, 828 (2000).
[122] Varma, C. M., Phys. Rev. B55, 14554 (1997).
[123] Varma, C. M.et al., Phys. Rev. Lett.63, 1996 (1989).
[124] Vašek, P., Janeček, I. and Plecháček, V., Physica C247, 381 (1995).
[125] Vershinin, M., Science303, 1995 (2004).
[126] Vignolle, D., Nature455, 952 (2008).
[127] Vishik, I. M., Nat. Phys.5, 718 (2009).
[128] Wakimoto, S., Phys. Rev. Lett.92, 217004 (2004).
[129] Warren, W. W., Phys. Rev. Lett.62, 1193 (1989).
[130] Wu, J., Proc. Natl Acad. Sci. USA113, 4284 (2016).
[131] Wu, T.et al., Nature477, 191 (2011).
[132] T. Wu, Short-Range Charge Order Reveals the Role of Disorder in the Pseudogap State of High-Tc Superconductors (2014).
[133] Xia, J., Phys. Rev. Lett.100, 127002 (2008).
[134] Yang, C. N. and Mills, R., Phys. Rev.96, 191 (1954). · Zbl 1378.81075
[135] Yang, H. B., Nature456, 77 (2008).
[136] Zaanen, J., Nature430, 512 (2004).
[137] Zaanen, J., Science315, 1372 (2007).
[138] Zaanen, J. and Gunnarsson, O., Phys. Rev. B40, 7391 (1989).
[139] Zhang, J. C., Proc. Natl. Acad. Sci. USA114, 5378 (2017).
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.