×

Discrete-time adaptive fuzzy speed regulation control for induction motors with input saturation via command filtering. (English) Zbl 1416.93124

Summary: A discrete-time adaptive fuzzy control method is introduced to achieve the speed regulation for induction motors (IMs) with input saturation via command filtering in this paper. First, the continuous model of IMs drive system is transformed into discrete-time form by using Euler formula. Then, the fuzzy logic systems are used to approximate the unknown nonlinear functions in the discrete-time drive system. In addition, the command filtering control method is introduced to overcome the “explosion of complexity” problem in the design process of traditional backstepping method. It is verified that all the closed-loop signals are bounded and the outputs can track the given reference signals well. Finally, simulation results illustrate the validity of the discrete-time control method.

MSC:

93C42 Fuzzy control/observation systems
93C40 Adaptive control/observation systems
93C55 Discrete-time control/observation systems
93C95 Application models in control theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Yu, J. P.; Ma, Y. M.; Yu, H. S.; Lin, C., Adaptive fuzzy dynamic surface control for induction motors with iron losses in electric vehicle drive systems via backstepping, Inf. Sci., 376, 172-189 (2017)
[2] Yu, H. S.; Yu, J. P.; Liu, J.; Song, Q., Nonlinear control of induction motors based on state error PCH and energy-shaping principle, Nonlinear Dyn., 72, 1-2, 49-59 (2013) · Zbl 1268.93068
[3] Zhang, Y.; Akujuobi, C. M.; Ali, W. H.; Tolliver, C. L.; Shieh, L. S., Load disturbance resistance speed controller design for PMSM, IEEE Trans. Ind. Electron., 53, 4, 1198-1208 (2006)
[4] Yu, J. P.; Shi, P.; Dong, W.; Chen, B.; Lin, C., Neural network-based adaptive dynamic surface control for permanent magnet synchronous motors, IEEE Trans. Neural Netw. Learn. Syst., 26, 3, 640-645 (2015)
[5] Wang, S. B.; Ren, X. M.; Na, J., Adaptive dynamic surface control based on fuzzy disturbance observer for drive system with elastic coupling, J. Frankl. Inst., 353, 8, 1899-1919 (2016) · Zbl 1347.93157
[6] Li, T. S.; Wang, D.; Feng, G.; Tong, S. C., A DSC approach to robust adaptive NN tracking control for strict-feedback nonlinear systems, IEEE Trans. Syst. Man Cybern. B Cybern., 40, 3, 915-927 (2010)
[7] Chen, M.; Tao, G.; Jiang, B., Dynamic surface control using neural networks for a class of uncertain nonlinear systems with input saturation, IEEE Trans. Neural Netw. Learn. Syst., 26, 9, 2086-2097 (2015)
[8] Leu, V. Q.; Choi, H. H.; Jung, J. W., Fuzzy sliding mode speed controller for PM synchronous motors with a load torque observer, IEEE Trans. Power Electron., 27, 3, 1530-1539 (2011)
[9] Li, H. Y.; Shi, P.; Yao, D.; Wu, L., Observer-based adaptive sliding mode control of nonlinear Markovian jump systems, Automatica., 64, 133-142 (2016) · Zbl 1329.93126
[10] Li, H. Y.; Yu, J. Y.; Hilton, C.; Liu, H. H., Adaptive sliding mode control for nonlinear active suspension vehicle systems using T-S fuzzy approach, IEEE Trans. Ind. Electron., 60, 8, 3328-3338 (2012)
[11] Wang, T. T.; Fei, J. T., Adaptive neural control of active power filter using fuzzy sliding mode controller, IEEE Access., 4, 6816-6822 (2016)
[12] Wang, Y. C.; Cao, L. J.; Zhang, S. X.; Hu, X. X.; Yu, F. X., Command filtered adaptive fuzzy backstepping control method of uncertain nonlinear systems, IET Control Theory Appl., 10, 10, 1134-1141 (2016)
[13] Liu, H. L.; Shi, X. P.; Bi, X. T.; Zhang, J., Backstepping based terminal sliding mode control for rendezvous and docking with a tumbling spacecraft, Int. J. Innov. Comput. Inf. Control., 12, 3, 929-940 (2016)
[14] Tong, S. C.; Li, Y.; Li, Y. M.; Liu, Y. J., Observer-based adaptive fuzzy backstepping control for a class of stochastic nonlinear strict-feedback systems, IEEE trans, Syst. Man Cybern. B Cybern., 41, 6, 1693-1704 (2011)
[15] Liu, Y. J.; Tong, S. C., Adaptive NN tracking control of uncertain nonlinear discrete-time systems with nonaffine dead-zone input, IEEE Trans. Cybern., 45, 3, 497-505 (2014)
[16] Vatankhah, R.; Asemani, M. H., Output feedback control of piezoelectrically actuated non-classical micro-beams using TS fuzzy model, J. Frankl. Inst., 354, 2, 1042-1065 (2017) · Zbl 1355.93103
[17] Chen, M.; Ge, S. S.; How, B. V., Robust adaptive neural network control for a class of uncertain MIMO nonlinear systems with input nonlinearities, IEEE Trans. Neural Netw., 21, 5, 796-812 (2010)
[18] Xi, Z.; Cheng, D. Z., Passivity-based stabilization and h-infinity control of the hamiltonian control systems with dissipation and its applications to power systems, Int. J. Control., 73, 18, 1686-1691 (2000) · Zbl 1006.93020
[19] Donaire, A.; Mehra, R.; Ortega, R.; Satpute, S.; Romero, J. G.; Kazi, F.; Singh, N. M., Shaping the energy of mechanical systems without solving partial differential equations, IEEE Trans. Autom. Contr., 61, 4, 1051-1056 (2015) · Zbl 1359.93362
[20] Su, X. J.; Shi, P.; Wu, L. G.; Song, Y. D., A power-efficient adaptive fuzzy resolution control system for wireless body sensor networks, IEEE Access., 3, 743-751 (2015)
[21] Shen, H.; Wu, Z. G.; Park, J. H., Reliable mixed passive and h-infinity filtering for semi-Markov jump systems with randomly occurring uncertainties and sensor failures, Int. J. Robust Nonlinear Control., 25, 17, 3231-3251 (2017) · Zbl 1338.93378
[22] Zhao, H. Y.; Gao, B. Z.; Ren, B. T.; Chen, H., Integrated control of in-wheel motor electric vehicles using a triple-step nonlinear method, J. Frankl. Inst., 352, 2, 519-540 (2015) · Zbl 1307.93300
[23] Yu, J. P.; Yu, H. S.; Lin, C.; Dong, W. J., Fuzzy finite-time command filtered control of nonlinear systems with input saturation, IEEE Trans. Cybern., 99, 1-10 (2017)
[24] Ma, J. J.; Zheng, Z. Q.; Li, P., Adaptive dynamic surface control of a class of nonlinear systems with unknown direction control gains and input saturation, IEEE Trans. Cybern., 45, 4, 728-741 (2014)
[25] Yu, J. P.; Shi, P.; Dong, W. J.; Lin, C., Command filtering-based fuzzy control for nonlinear systems with saturation input, IEEE Trans. Cybern., 47, 9, 2472-2479 (2017)
[26] Fu, C.; Zhao, L.; Yu, J. P.; Yu, H. S.; Lin, C., Neural network-based command filtered control for induction motors with input saturation, IET Control Theory Appl., 11, 15, 2636-2642 (2017)
[27] Niu, H.; Yu, J. P.; Yu, H. S.; Lin, C.; Zhao, L., Adaptive fuzzy output feedback and command filtering error compensation control for permanent magnet synchronous motors in electric vehicle drive systems, J. Frankl. Inst., 354, 15, 6610-6629 (2017) · Zbl 1373.93191
[28] Yu, J. P.; Shi, P.; Yu, H. S.; Chen, B.; Lin, C., Approximation-based discrete-time adaptive position tracking control for interior permanent magnet synchronous motors, IEEE Trans. Cybern., 45, 7, 1363-1371 (2014)
[29] Yu, J. P.; Ma, Y. M.; Yu, H. S.; Lin, C., Reduced-order observer-based adaptive fuzzy tracking control for chaotic permanent magnet synchronous motors, Neurocomputing., 214, 201-209 (2016)
[30] Yu, J. P.; Shi, P.; Dong, W.; Lin, C., Adaptive fuzzy control of nonlinear systems with unknown dead zones based on command filtering, IEEE Trans. Fuzzy Syst., 26, 1, 46-55 (2018)
[31] Chen, B.; Liu, X. P.; Liu, K. F.; Lin, C., Direct adaptive fuzzy control of nonlinear strict-feedback systems, Automatica., 45, 6, 1530-1535 (2009) · Zbl 1166.93341
[32] Li, T. S.; Tong, S. C.; Feng, G., A novel robust adaptive fuzzy tracking control for a class of nonlinear multi-input multi-output systems, IEEE Trans. Fuzzy Syst., 18, 1, 150-160 (2009)
[33] Tong, S. C.; Sui, S.; Li, Y. M., Fuzzy adaptive output feedback control of MIMO nonlinear systems with partial tracking errors constrained, IEEE Trans. Fuzzy Syst., 23, 4, 729-742 (2015)
[34] Hua, C. C.; Wang, Q. G.; Guan, X. P., Adaptive fuzzy outputfeedback controller design for nonlinear time-delay systems with unknown control direction, IEEE Trans. Syst. Man Cybern. B, Cybern., 39, 2, 363-374 (2009)
[35] Shen, Q. K.; Jiang, B.; Cocquempot, V., Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults, IEEE Trans. Fuzzy Syst., 22, 2, 338-349 (2014)
[36] Li, Y. M.; Tong, S. C.; Li, T. S., Observer-based adaptive fuzzy tracking control of MIMO stochastic nonlinear systems with unknown control direction and unknown dead-zones, IEEE Trans. Fuzzy Syst., 23, 4, 1228-1241 (2015)
[37] Su, X. J.; Wen, Y.; Shi, P.; Lam, H. K., Event-triggered fuzzy filtering for nonlinear dynamic systems via reduced-order approach, IEEE Trans. Fuzzy Syst. (2018)
[38] Zhou, Z. C.; Yu, J. P.; Yu, H. S.; Lin, C., Neural network-based discrete-time command filtered adaptive position tracking control for induction motors via backstepping, Neurocomputing, 260, 203-210 (2017)
[39] Yu, J. P.; Chen, B.; Yu, H. S.; Lin, C.; Ji, Z. J.; Cheng, X. Q., Position tracking control for chaotic permanent magnet synchronous motors via indirect adaptive neural approximation, Neurocomputing, 156, 245-251 (2015)
[40] Leonhard, W., Control of Electrical Drives (1996), Springer Science and Business Media Press: Springer Science and Business Media Press Berlin
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.