×

zbMATH — the first resource for mathematics

Some properties of the Teodorescu operator related to the \(\alpha\)-Dirac operator. (English) Zbl 1303.30047
Summary: We first define Teodorescu operator \(T_{\alpha,\Omega}\) related to the \(\alpha\)-Dirac operator in Clifford analysis. Then we discuss the existence, \(q\)-times integrability, differentiability and mapping properties of Teodorescu operator \(T_{\alpha,\Omega}\) in a nonempty open set \(\Omega \subset \mathbb R^n\), which is bounded connected.

MSC:
30G35 Functions of hypercomplex variables and generalized variables
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Vekua N, Generalized analytic functions (1962)
[2] Begehr H, Functional analytic methods in complex analysis and applications to partial differential equations pp 115– (1995)
[3] Dzhuraev A, Methods of singular integral equations (1992)
[4] Dzhuraev A, Degenerate and other problems (1992)
[5] Wen GC, Sichuan Normal Univ. J 2 pp 53– (1983)
[6] DOI: 10.1216/rmjm/1181071888 · Zbl 0902.30030 · doi:10.1216/rmjm/1181071888
[7] Brackx F, Delanghe R, Sommen F. Clifford analysis. Vol. 76, Research note in mathematic. London: Pitman Press; 1982. p. 44–136.
[8] DOI: 10.1007/978-94-011-2922-0 · doi:10.1007/978-94-011-2922-0
[9] DOI: 10.1007/978-3-0348-7295-9 · doi:10.1007/978-3-0348-7295-9
[10] Gürlebeck K, Quaternionic and Clifford calculus for physicists and engineers (1997) · Zbl 0897.30023
[11] Yang PW, Acta Math. Sinica 46 pp 993– (2003)
[12] DOI: 10.1080/00036811.2010.484390 · Zbl 1262.30055 · doi:10.1080/00036811.2010.484390
[13] DOI: 10.1080/02781070500138817 · Zbl 1188.35051 · doi:10.1080/02781070500138817
[14] DOI: 10.1007/BF01082451 · Zbl 0790.30039 · doi:10.1007/BF01082451
[15] DOI: 10.1080/02781070310001617529 · Zbl 1065.30050 · doi:10.1080/02781070310001617529
[16] Xu ZY, Partial differential equations with complex analysis. Research notes in mathematics series, 262 pp 204– (1992)
[17] DOI: 10.1080/17476938208814464 · Zbl 0762.47023 · doi:10.1080/17476938208814464
[18] DOI: 10.1080/17476930600672940 · Zbl 1109.30039 · doi:10.1080/17476930600672940
[19] Gilbert RP, First order elliptic systems (1983)
[20] DOI: 10.1007/978-3-642-61631-0 · doi:10.1007/978-3-642-61631-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.