×

2\(\pi\)-periodic self-similar solutions for the anisotropic affine curve shortening problem. (English) Zbl 1232.34069

The study of the generalized curve shortening problem motivates the content of this paper, where the authors consider the existence of \(n\pi\)-periodic (\(n \geq 2\)) positive solutions of the equation \[ u_{\theta \theta} + u = \frac{a(\theta)}{u^3}. \] Here, \(a(\theta)\) is a positive and smooth \(n\pi\)-periodic function. There is a special emphasis on the case \(n=2.\) In the proof, the authors carry out a careful analysis of the interaction between different blow-ups, the Lyapunov-Schmidt reduction and degree theory are also used.

MSC:

34C25 Periodic solutions to ordinary differential equations
53C44 Geometric evolution equations (mean curvature flow, Ricci flow, etc.) (MSC2010)
47N20 Applications of operator theory to differential and integral equations
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abresh U., Langer J.: The normalized curved shortening flow and homothetic solutions. J. Differ. Geom. 23, 175–196 (1986) · Zbl 0592.53002
[2] Ai J., Chou K.S., Wei J.: Self-similar solutions for the anisotropic affine curve shortening problem. Calc. Var. 13, 311–337 (2001) · Zbl 1086.35035 · doi:10.1007/s005260000075
[3] Altschuler S.: Singularities of the curve shrinking flow for space curves. J. Differ. Geom. 34, 491–514 (1991) · Zbl 0754.53006
[4] Andrews B.: Contraction of convex hypersurfaces by their affine normal. J. Differ. Geom. 43, 207–230 (1996) · Zbl 0858.53005
[5] Andrews B.: Evolving convex curves. Calc. Var. 7, 315–371 (1998) · Zbl 0931.53030 · doi:10.1007/s005260050111
[6] Angenent S.: On the formation of singularities in the curve shortening flow. J. Differ. Geom. 33, 601–634 (1991) · Zbl 0731.53002
[7] Angenent S., Gurtin M.E.: Multiphase thermodynamics with interfacial structure evolution of an isothermal interface. Arch. Ration. Mech. Anal. 108, 323–391 (1989) · Zbl 0723.73017 · doi:10.1007/BF01041068
[8] Chang K.C., Liu J.Q.: On Nirenberg’s problem. Int. J. Math. 4, 35–58 (1993) · Zbl 0786.58010 · doi:10.1142/S0129167X93000042
[9] Chang S.Y.A., Yang P.C.: Prescribing Gaussian curvature on S 2. Acta Math. 159, 215–259 (1987) · Zbl 0636.53053 · doi:10.1007/BF02392560
[10] Chang S.Y.A., Yang P.C.: A perturbation result in prescribing scalar curvature on S n . Duke Math. J. 64, 2769 (1991) · Zbl 0739.53027
[11] Chen W.X.: L p -Minkowski problem with not necessarily positive data. Adv. Math. 201, 77–89 (2006) · Zbl 1102.34023 · doi:10.1016/j.aim.2004.11.007
[12] Chen W.X., Ding W.Y.: Scalar curvature on S 2. Trans. Am. Math. Soc. 303, 369–382 (1987) · Zbl 0635.35026
[13] Chen W.X., Li C.M.: A priori estimates for prescribing scalar curvature equations. Ann. Math. 145, 547–564 (1997) · Zbl 0877.35036 · doi:10.2307/2951844
[14] Chang S.Y.A., Gursky M.J., Yang P.C.: The scalar curvature equation 2- and 3-spheres. Calc. Var. 1, 205–229 (1993) · Zbl 0822.35043 · doi:10.1007/BF01191617
[15] Chou K.S., Zhang L.: On the uniqueness of stable ultimate shapes for the anisotropic curve-shorting problem. Manuscr. Math. 102(1), 101–110 (2000) · Zbl 0952.35046 · doi:10.1007/s002291020101
[16] Chou K.S., Zhu X.P.: Anisotropic flows for convex plane curves. Duke Math. J. 97, 579–619 (1999) · Zbl 0946.53033 · doi:10.1215/S0012-7094-99-09722-3
[17] del Pino M., Manásevich R., Montero A.: T-periodic solutions for some second order differential equation with singularities. Proc. R. Soc. Edinb Sect. A 120, 231–243 (1992) · Zbl 0761.34031 · doi:10.1017/S030821050003211X
[18] Dohmen C., Giga Y.: Self-similar shrinking curves for anisotropic curvature flow equations. Proc. Jpn Acad. Ser. A 70, 252–255 (1994) · Zbl 0815.34026 · doi:10.3792/pjaa.70.252
[19] Dohmen C., Giga Y., Mizoguchi N.: Existence of self-similar shrinking curves for anisotropic curvature flow equations. Calc. Var. 4, 103–119 (1996) · Zbl 0847.34042 · doi:10.1007/BF01189949
[20] Fonseca I., Gangbo W.: Degree Theory in Analysis and Applications. Oxford Science Publications, Oxford (1995) · Zbl 0852.47030
[21] Gage M.E.: Evolving plane curve by curvature in relative geometries. Duke Math. J. 72, 441–466 (1993) · Zbl 0798.53041 · doi:10.1215/S0012-7094-93-07216-X
[22] Gage M.E., Hamilton R.: The heat equation shrinking convex plane curves. J. Differ. Geom. 23, 69–96 (1996) · Zbl 0621.53001
[23] Gage M.E., Li Y.: Evolving plane curve by curvature in relative geometries II. Duke Math. J. 75, 79–98 (1994) · Zbl 0811.53033 · doi:10.1215/S0012-7094-94-07503-0
[24] Grayson M.: The heat equation shrinking embedded curves to round points. J. Differ. Geom. 26, 285–314 (1987) · Zbl 0667.53001
[25] Gurtin M.E.: Thermodynamics of Evolving Phase Boundaries in the Plane. Clarendon Press, Oxford (1993) · Zbl 0787.73004
[26] Han Z.C.: Prescribing Gaussian curvature on S 2. Duke Math. J. 61, 679–703 (1990) · Zbl 0715.53034 · doi:10.1215/S0012-7094-90-06125-3
[27] Jiang M.-Y.: Remarks on the 2-dimensional L p -Minkowski problem. Adv. Nonlin. Stud. 10, 297–313 (2010) · Zbl 1203.37102
[28] Li Y.: On Nirenberg’s problem and related topics. Topol. Methods Nonlin. Anal. 6, 309–329 (1994) · Zbl 0812.53039
[29] Matano, H., Wei, J.: On anisotropic curvature flow equations, preprint
[30] Rey O., Wei J.: Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, I:N = 3. J. Funct. Anal. 212, 472–499 (2004) · Zbl 1134.35049 · doi:10.1016/j.jfa.2003.06.006
[31] Rey O., Wei J.: Blow-up solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity, II:N 4. Ann. Inst. H. Poincaré, Anal. Nonlin. 22, 459–484 (2005) · Zbl 1331.35133 · doi:10.1016/j.anihpc.2004.07.004
[32] Sapiro G., Tannenbaum A.: On affine plane curve evolution. J. Funct. Anal. 119, 79–120 (1994) · Zbl 0801.53008 · doi:10.1006/jfan.1994.1004
[33] Wei J., Xu X.W.: On conformal deformations of metrics on S n . J. Funct. Anal. 157, 292–325 (1998) · Zbl 0924.58120 · doi:10.1006/jfan.1998.3271
[34] Wei J., Xu X.W.: Prescribing Q-curvature problem on S n . J. Funct. Anal. 257, 1995–2023 (2009) · Zbl 1172.58005 · doi:10.1016/j.jfa.2009.06.024
[35] Xu X.W., Yang P.C.: Remarks on prescribing Gauss curvature. Trans. Am. Math. Soc. 336, 831–840 (1993) · Zbl 0823.53034 · doi:10.1090/S0002-9947-1993-1087058-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.