×

Local convergence of Newton’s method on the Heisenberg group. (English) Zbl 1336.58005

Summary: In the present paper, we study Newton’s method on the Heisenberg group for solving the equation \(f(x) = 0\), where \(f\) is a mapping from Heisenberg group to its Lie algebra. Under certain generalized Lipschitz condition, we obtain the convergence radius of Newton’s method and the estimation of the uniqueness ball of the zero point of \(f\). Some applications to special cases including Kantorovich’s condition and \(\gamma\)-condition are provided. The determination of an approximate zero point of an analytic mapping is also presented. Concrete examples are given to illustrate applications of our results.

MSC:

58C15 Implicit function theorems; global Newton methods on manifolds
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Kantorovich, L. V.; Akilov, G. P., Functional Analysis (1982), Pergamon: Pergamon Oxford · Zbl 0484.46003
[2] Wang, X. H., Convergence of Newton’s method and uniqueness of the solution of equations in Banach space, IMA J. Numer. Anal., 20, 1, 123-134 (2000) · Zbl 0942.65057
[3] Wang, X. H., Convergence of Newton’s method and inverse function theorem in Banach spaces, Math. Comp., 225, 169-186 (1999) · Zbl 0923.65028
[4] Smale, S., Newton’s method estimates from data at one point, (Ewing, R.; Gross, K.; Martin, C., The Merging of Disciplines NewDirections in Pure, Applied and Computational Mathematics (1986), Springer: Springer NewYork), 185-196
[5] Absil, P. A.; Baker, C. G.; Gallivan, K. A., Trust-region methods on Riemannian manifolds, Found. Comput. Math., 7, 303-330 (2007) · Zbl 1129.65045
[6] dler, R. A.; Dedieu, J. P.; Margulies, J.; Martens, M.; Shub, M., Newton’s method on Riemannian manifolds and a geometric model for human spine, IMA J. Numer. Anal., 22, 1-32 (2002)
[7] Edelman, A.; Arias, T. A.; Smith, T., The geometry of algorithms with orthogonality constraints, SIAM J. Matrix Anal. Appl., 20, 303-353 (1998) · Zbl 0928.65050
[8] Udriste, C., (Convex Functions and Optimization Methods on Riemannian Manifolds. Convex Functions and Optimization Methods on Riemannian Manifolds, Mathematics and Its Applications, vol. 297 (1994), Kluwer Academic Publishers: Kluwer Academic Publishers Dordrecht) · Zbl 0932.53003
[9] Alvarez, F.; Bolte, J.; Munier, J., A unifying local convergence result for Newton’s method in Riemannian manifolds, Found. Comput. Math., 8, 197-226 (2008) · Zbl 1147.58008
[10] Dedieu, J. P.; Priouret, P.; Malajovich, G., Newton’s method on Riemannian manifolds: covariant alpha theory, IMA J. Numer. Anal., 23, 395-419 (2003) · Zbl 1047.65037
[11] Ferreira, O. P.; Svaiter, B. F., Kantorovich’s theorem on Newton’s method in Riemannian manifolds, J. Complexity, 18, 304-329 (2002) · Zbl 1003.65057
[12] Li, C.; Wang, J. H., Newton’s method for sections on Riemannian manifolds: Generalized covariant \(\alpha \)-theory, J. Complexity, 24, 423-451 (2008) · Zbl 1153.65059
[13] Li, C.; Wang, J. H., Newton’s method on Riemannian manifolds: Smale’s point estimate theory under the \(\gamma \)-condition, IMA J. Numer. Anal., 26, 228-251 (2006) · Zbl 1094.65052
[14] Li, C.; Wang, J. H., Convergence of the Newton method and uniqueness of zeros of vector fields on Riemannian manifolds, Sci. China Ser. A, 48, 1465-1478 (2005) · Zbl 1116.53024
[15] Wang, J. H.; Li, C., Uniqueness of the singular point of vector field on Riemannian manifold under the \(\gamma \)-condition, J. Complexity, 22, 533-548 (2006) · Zbl 1102.65064
[16] Mahony, R. E., The constrained Newton method on a Lie group and the symmetric eigenvalue problem, Linear Algebra Appl., 248, 67-89 (1996) · Zbl 0864.65032
[18] Smith, S. T., Optimization techniques on Riemannian manifolds, (Fields Institute Communications, Vol. 3 (1994), American Mathematical Society: American Mathematical Society Providence, RI), 113-146 · Zbl 0816.49032
[19] Owren, B.; Welfert, B., The Newton iteration on Lie groups, BIT Numer., 40, 121-145 (2000) · Zbl 0957.65054
[20] Wang, J. H.; Li, C., Kantorovich’s theorems for Newton’s method for mappings and optimization problems on Lie groups, IMA J. Numer. Anal., 31, 322-347 (2011) · Zbl 1215.65106
[21] Li, C.; Wang, J. H.; Dedieu, J. P., Newton’s Method on Lie groups: Smale’s point estimate theory under the \(\gamma \)-condition, J. Complexity, 25, 128-151 (2009) · Zbl 1170.65040
[22] Ali, S. T.; Antoine, J. P.; Gazeau, J. P., Coherent States, Wavelets and their Generalizations (2000), Springer: Springer New York, Berlin, Heidelberg · Zbl 1064.81069
[23] Binz, E.; Pods, S., The Geometry of Heisenberg Groups: With Applications in Signal Theory, Optics, Quantization, and Field Quantization (2008), The American Mathematical Society · Zbl 1155.22001
[24] Folland, G. B., Harmonic Analysis in Phase Space (1989), Princeton University Press · Zbl 0682.43001
[25] Gerrard, A.; Burch, J. M., Introduction to Matrix Methods in Optics (1975), John Wiley and Sons · Zbl 0863.15014
[26] Gosson, M., Symplectic Geometry-Weyl-Moyal-Calculus, and Quantum Mechanics (2006), Birkhauser Verlag: Birkhauser Verlag Basel, Boston, Berlin
[27] Guillemin, V.; Sternberg, S., Symplectic Techniques in Physics (1991), Cambridge University Press
[28] Grochenig, K. H., Foundations of Time-Frequency Analysis (2000), Birkhauser: Birkhauser Boston
[29] Schempp, W. J., (Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory. Harmonic Analysis on the Heisenberg Nilpotent Lie Group with Applications to Signal Theory, Pitman Research Notes in Mathematics Series, vol. 147 (1986), Longman Scientific and Technical) · Zbl 0632.43001
[30] Varadarajan, V. S., (Lie Groups, Lie Algebras and their Representations. Lie Groups, Lie Algebras and their Representations, GTM, vol. 102 (1984), Springer-Verlag: Springer-Verlag New York) · Zbl 0955.22500
[31] Capogna, L.; Danielli, D.; Pauls, S. D.; Tyson, J. T., An introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem (2007), Birkhaser Verlag AG · Zbl 1138.53003
[32] Blum, L.; Cucker, F.; Shub, M.; Smale, S., Complexity and Real Computation (1997), Springer: Springer New York
[33] Smale, S., Complexity theory and numerical analysis, Acta Numer., 6, 523-551 (1997) · Zbl 0883.65125
[34] Wang, X. H.; Xuan, X. H., Random polynomial space and computational complexity theory, Sci. China Ser. A, 30, 673-684 (1987) · Zbl 0689.65029
[35] Chen, P. Y., Approximate zeros of quadratically convergent algorithms, Math. Comp., 63, 247-270 (1994) · Zbl 0814.65044
[36] Munthe-Kaas, H., High order Runge-Kutta methods on manifolds, Appl. Numer. Math., 29, 115-127 (1999) · Zbl 0934.65077
[37] Hall, B. C., Lie Groups, Lie Algebras, and Representations: An Elementary Introduction (2003), Springer, Corr. 2nd printing edition (August 7, 2003) · Zbl 1026.22001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.